Applications s

Issue Number 37 March | April 1989 $3.00

C Pointers, Arrays & Structures Made Easier
Part 1: Pointers

ZCPR3 Corner
Z-Nodes, NZCOM, and ZFILER

Information Engineering
Basic Concepts

Shells

Storing Date Variables

Resident Programs
TSRs and How They Work

Advanced CP/IM

Raw and Cooked Console /O

Real Computing
N$3200

ZSDOS

Anatomy of an Operating System

ISSN # 0748-9331

THE COMPUTER JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carison

Circulation
Donna Carlson

Contributing Editors

C. Thomas Hilton
Bill Kibler
Bridger Mitchell
Bruce Morgan
Richard Rodman
Jay Sage
Barry Workman

The Computer Journal is
published six times a year by
Publishing Consultants, 190
Sullivan Crossroad, Columbia
Falls, MT 59912 (406) 257-9119

Entire contents copyright©
1989 by Publishing Consultants.

Subscription rates—$16 one
year (6 issues), or $28 two years (12
" issues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other coun-
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912,

Address all editorial and adver-
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Lillipute Z-Node sysop has
made his BBS systems available to
the TCJ subscribers. Log in on
both systems (312-649-1730 & 312-
664-1730), and leave a message for
SYSOP requesting TCJ access.

The COMPUTER
JOURNAL

Issue Number 37

Features

March / April 1989

C Pointers, Arrays and Structures Made Easier

This first installment covering pointers is part of a

series on three topics which are difficult to

understand, but necessary for advanced C

programming.

BY CIEM PEPPEI. .. .o e ettt et ettt 4

ZCPR3 Corner

Z-Nodes, patching programs for NZCOM, and

ZFILER

DY JAY SAGE. . . oo 8

Information Engineering

Basic concepts—Fields, field definition and client

worksheets.

by C.Thomas Hiltonc.oou et 15

Shells

Using ZCPR3’s Named Shell Variables to store

date variables

DY RICK CRAIMES\ et ettt et ettt 21

Resident Programs
A detailed look at the organization of TSRs and
how they can lead to chaos

bYDr.EOWINTREHt ettt 25
Advanced CP/M

Raw and cooked console /O

by Bridger MitChellcooue ettt 32
Real Computing

National Semiconductor 320XX, floating point,

memory management, coprocessor boards, and

the free operating system

bY Richard ROGMAN. 37

ZSDOS—Anatomy of an Operating System
First installment in a series describing the steps
and decisions involved in designing an operating

system

by Harold F. Bowerand Cameron W. Cotrill.......................... 39
Columns

Editorialoo s 3

Computer Corner by BillKibler............................... 48

Big power

for smaller systems. -

Little Board/286 is the newest

member of our family of MS-DOS
compatible Single Board Systems. It gives
you the power of an AT in the cubic inches
of ahalfheight 5 1/4” disk drive. It requires
no backplane. It’s a complete AT-compat-
ible system that’s functionally equivalent to
the 5-board system above. But, in less than
6% of the volume. It runs all AT software.
And its low-power requirement means
high reliability and great performance in
harsh environments.

Ideal for embedded & dedicated
applications. The low power and tiny
form factor of Little Board/286 are perfect
for embedded microcomputer applica-
tions: data acquisition, controllers,
portable instruments, telecommunica-
tions, diskless workstations, POS terminals
.. .virtually anywhere that small size and
complete AT hardware and software
compatibility are an advantage.

Wk
; PP i Rees -

1R LY

q&uguau”

12 MHz 802

AT-Com

-

ati

THEAMPRO LITTLEBOARD /286

Compare features.
Both systems offer:
& §or 12MHz versions

o 512Kor 1Mbyte on-board

DRAM

» 80287 math co-processor

option

e Full set of AT-compatible

controllers
® 2 RS232C ports
o Parallel printer port
o Floppy disk controller

o EGA/CGA/Hercules/MDA

video options
o AT-compatible bus
expansion

e Awide range of expansion e Single voltage operation

options
o IBM-compatible Award
ROMBIOS

But only Little
Board/286 offers:
¢ 5.75” x 8" form factor

e EGA/CGA/Hercules/MDA Better answers for OEMs.

on a daughterboard
with no increase in
volume

o SGSI bus support for a
wide variety of devices:
Hard disk to bubble
drives

o On-board 1Kbit serial
EPROM. 512 bits
available for OEMs

© Two byte-wide sockets
for EPROM/RAM/
NOVRAM expansion
(usable as on-board
solid-state disk)

(+5VDC only)

o Less than 10W power
consumption

o 0-70°C operating
range

*AT is a Registered Trademark of 18M Corp.

Little Board/286 is not only a smaller
answer, i'sa better answer . . . offering
the packaging flexibility, reliability, low
power consumption and I/O capabilities
OEMsneed. . . at avery attractive price.
And like all Ampro Little Board products,
Little Board/286 is available through
representatives nationwide, and world-
wide. For more information and the name
of your nearest Rep, call us today at the
number below. Or, write for Ampro Little
Board/286 product literature.

408-734-2800

Fax:408-734-2939 TLX: 4940302

4 0\ o | ™

COMPUTERS, INCORPORATED
1130 Mountain View/Alviso Road
Sunnyvale, CA 94089

Reps: Australia-61 3 720-3298; Belgium-32 87 46.90.12; Canada-(604) 438-0028; Denmark-45 3 66 20 20; Finland-358 0 585-322; France-331 4502-1800; Germany, West-49 89 611-6151;
lsrael-972-3 49-16-5; Haly-39 6 811-9406; Japan-81 3 257-2630; Spain-34 3 204-2099; Sweden-46 88 55-00-65: Switzerdand-41 1 740-41-05; United Kingdom-44 2 964-35511; USA, contact AMPRO.

Editor’s Page

Is UNIX in Your Future?

The hardware developers have made
great strides in producing more powerful
CPUs. Thirty-two bit processors with
clock speeds of 30 MHz or more will be
the normal high-end system by the end or
this year. Desktop units with these
processors can provide processing power
which surpasses the mainframes of a few
years ago, and the trend towards replacing
mainframes with desktop units will ac-
celerate. Systems using microprocessors
such as the Z-80, 680X0, 8086, or 80X86
have been called microcomputers, but
when we have desktop units with more
power than the minicomputers, we’ll have
to coin a new term.

These powerful CPUs provide us with
the hardware portions of high speed
multiuser multitasking systems for large
scale business applications, but the sof-
tware developments have not kept pace
with the hardware. While the CPU is the
brain of the computer, the operating
system is the nerve center which connects
the brain to the parts which do the work.

Most of attempts at Multiuser
Multitasking Operating Systems (I’ll call
them MMOS to save keystrokes) have
failed to achieve the critical mass required
to attract the high performance
reasonably priced application programs
which are absolutely necessary for com-
mercial success. Success is determined by
both the hardware and the operating
system, but the respective hardware plat-
forms would not have sold without the
standardized environments provided by
the CP/M, AppleDOS, PC/MS-DOS, or
Macintosh systems.

Long term readers will be well aware of
my negative feelings about MMOSs. I was
turned off by the results of implemen-
tations on slow, limited memory, eight
and sixteen bit systems—and by experien-
ce with the early multiuser minicom-
puters. (A local government agency is still
using a mini which sometimes takes as
long as eight seconds to return a keystroke
during wordprocessing!) I have always
wanted multiple CPUs for a single user,
but the new hardware can provide the per-
formance required in business ap-

The Computer Journal / Issue #37

plications—if only we had the right OS
and software.

It would be nice to grow a MMOS from
one of our current systems so that we
could continue to use all of our familiar
tools and utilities. It is difficult to aban-
don our favorite TSR’s and our expert
knowledge of PC-DOS tricks, but
upgrading DOS to an MMOS by adding
makeshift patches is about as practical as
replacing the mule team on an 1850
covered wagon with a 440 cubic inch
supercharged engine—it just ain’t going
to work! We have survived the change
from AppleDOS to CP/M to ZCPR3 to
PC-DOS, and now we have to change to
another different OS.

In spite of the efforts of IBM,
Microsoft, and Digital Research with
0S/2 and Concurrent DOS, it appears
that UNIX® is the only real contender
for serious business use. In view of this,
TCJ will be publishing information on
UNIX and the choice of upgrade paths
from a PC/AT platform. Our goal is to
provide migration path technology to
minimize the trauma of the change. One
of the products we will be working with is
the MKS Toolkit (Mortice Kern Systems,
Inc., 35 King Street North, Waterloo, On-
tario, Canada N2J 2W9, phone (519) 884-
2251), which is a highly recommended
UNIX learning tool. 1 picked up the
descriptive term ‘““migration path
technology’’ from Ruth Songhurst at
MKS.

UNIX is in your future if you intend to
be involved in more than just hobby type
systems—start planning for it now. As
usual, your suggestions and articles are
welcome.

Industry Watch

I’ve been hearing a lot of rumors about
Kaypro, so I called their PR department
to find out what is going on. I asked,
‘‘Have there been any significant changes
in the past few months?’’ The answer I
received was, ‘‘Yes, but I'm not the per-
son to tell you. I’ll have Mr. Kay call you
back.’’ I have not heard any more, but it
has only been a few days and they may
still return my call. I tried to call the local

Kaypro dealer, but they have closed the
business. I don’t feel very confident about
Kaypro’s future.

The computer hardware and software
market is turning into a simple commodity
distribution channel. The problem is that
computers are not a simple commodity.
Users need technical support, but there is
not enough profit margin to enable the
dealers to provide the required support.

If a reputable dealer spends five to ten
hours performing a needs analysis for the
user, and then the user buys the system
somewhere else where the price is a few
dollars cheaper, who is the real winner? Is
it the low priced seller who made a small
profit without doing the work? Is it the
user who used one dealer’s services and
then bought elsewhere? What does the
low priced buyer do when they need
technical support? How will it affect the
user and the low price seller if the full ser-
vice dealer goes out of business?

There is no easy answer. We all like to
save money on a purchase, and I bought
my AT system mailorder where I could get
the best value (not necessarily the lowest
price). But, I felt that I was in the position
to analyze my needs, and I was prepared
to provide whatever support I needed. 1
was even mentally prepared to suffer the
loss if 1 ended up with a useless system.
And, 1 did not ask someone else to
provide free consultation services.

It appears that there is a need for in-
dependent consultants who can perform
the needs analysis required to determine
the necessary hardware and software, and
to provide the after sale support and
training. The problem is (at least here in
Northwest Montana) that the people who
shop the hardest for the lowest price are
not willing to pay for any support—they
expect everything to be given to them with
the system. They consider themselves
““‘Smart Shoppers’’ but they end up with
the wrong systems or with systems which
they never learn how to use.

Selecting the proper system and sof-
tware with after-the-sale training and sup-
port is vital to a business. I don’t know
what the outcome will be, but reputable

(Continued on page 44)

C Pointers, Arrays & Structures Made Easier

Part 1: Pointers
by Clem Pepper

From my own experience with the C language as a hobbyist and
experimenter I consider the three topics of the title as among the
most difficult to understand fully. Failure to understand the
basics of these places significant limits on what we may achieve
with our programs. It is to our advantage to make use of their
special attributes.

An objective of combining these three topics in a single article
series is to bring out the close relationship that exists between
them. That is, pointers and arrays have much in common, as will
be seen. The structure, from certain viewpoints, is a super array in
its capabilities. At an even higher level we find the union, though
not with the frequency of the array or structure.

The example exercises provided should compile and run with
any C compiler. The one possible exception is the ANSI screen
clear, but this has no bearing on the examples themselves.

Pointer Basics

In the construction of functions for our programs we make
type declarations of various kinds. These typically are int, char,
float, double, unsigned ... At times we see declarations such as
“‘int *value;”’ or possibly ‘‘char *string;.”” Unless we are ex-
perienced with pointer usage we will wonder at the meaning of
these.

Pointers are confusing to be sure but an understanding of their
usage is essential to working in C because they are to be found
everywhere.

By definition, ‘‘A pointer is a variable that contains the address
of another variable.”’” K & R refers to this variable as an ‘‘object’’
(Chapter 5, p89). The asterisk, when used in this manner, is
known as a ‘‘unary operator which treats its operand as the ad-
dress of the ultimate target and accesses that address to fetch the
content.”’” (The operand is the expression immediately following
the *.)

At this point the meaning of ‘‘unary’’ and ‘‘binary’’ as applied
to operators must be understood. These refer to the number of
associated operands. A ‘‘unary’’ operator has application to a
single operand; a ‘‘binary’’ to two. For example, the minus sign
in the assignment *‘this__var = - 3;” is a unary operator. When
“‘this__var = (varl — var2);”’ the minus sign is a binary operator.

A related unary operator is the ampersand, &. Where the unary
* points to an address, the ampersand is the address. We quite
likely have encountered this use of the & when using scanf.
Whenever we use scanf to read input from the keyboard we must
specify an address at which that input is to be placed. We write:

scanf(''%d'', &entry);

where “‘entry’’ is the keyboard input stored in memory at the ad-
dress given by ‘‘&entry.”’
The asterisk as a binary operator appears as:

result = (varl * var2);

multiplying the two variables. The binary ampersand in a bit
masking operation such as

masked_var = (var & OxF6);

performs a logical AND between var and hexadecimal F6.

In pointer operations the * and the & are unary operators. The
compiler distinguishes between the two by their usage. The same
is true for ourselves.

A declaration of ‘‘int *value’’ or ‘‘char *string”’ defines the
type of whatever is stored at the address pointed to. Thus ‘‘int”’ is
the type of a quantity located at memory address ‘‘value.”’
Similarly for the character declaration; the address pointed to by
“‘string’’ contains a type char. Luckily we do not have to be con-
cerned with the actual locations—the compiler takes care of this
for us.

Earlier we employed the example:

scanf(''%a'"’,

to illustrate the unary &. A reasonable query is how are we to
make use of the variable ‘‘entry?”’

The direct approach is to employ the variable in its integer
form. Such as:

&entry);

if(entry != 510) printf(''Sorry 'bout that!);

The indirect approach on the other hand is to assign a pointer
variable:

this_ptr = &entry;
or alternatively
int entry = *this_ptr;

A distinction to be stressed here is that ’&entry‘‘ is a constant
whereas ***this__ptr‘‘ is not so constrained. That is, we can make
7’this__ptr‘‘ point to any address. Thus, as our program requires
we can re-direct ’this__ptr‘‘ to whatever variable is appropriate.
To illustrate:

int this_ptr, first, last, inbetween;
this_ptr = &first; /% initially */
this_ptr = &inbetween; /¥ later */
this_ptr = &last; /% finally */

In this illustration we are assigning an address to *’this__ptr.‘*
In general our interest is not so much in the address as its content.
We obtain the content through indirection when we make the
pointer declaration:

int *this_ptr, first, last, inbetween;
*this_ptr = first; /% initially */
*this_ptr = inbetween; /% later */
*this_ptr = last; /% finally */

When we declare ’int val = 510;‘‘ we are assigning the value
510 to the integer variable ’val.‘‘ When we declare ”’int *val =
510;‘¢ we are not making the assignment to *’val‘‘ but to the con-
tent of the memory location pointed to by »’val.‘¢

Suppose there are three friends—Al, Joe and Jane. Through
some means Jane learns there is going to be a party at Joe’s in
May, but her information doesn’t include which day. Joe knows
the day, but Jane doesn’t have a current address (or phone num-
ber) for Joe. But she knows that Al does. So Jane calls Al, whose

The Computer Journal / Issue #37

number she has, to learn the day of the party. (Admittedly, from
a practical standpoint, Jane needs to know more than the date,
but let’s not get into that here!)

In other words, Jane wants information known to Joe. Jane
cannot access Joe directly. But Al can. So Jane passes a request to
Al who interrogates Joe. Al gets a reply and passes it back to
Jane.

Then:

Al = &Joe;

» Al*“ is assigned the address of **Joe.** Thus, while Al ‘points’ to
Joe’s location, *Al indicates the content of what Al is pointing to,
which is Joe’s knowledge of the party date. Note that content may
be written into or read out from Joe.

Now, we have this other integer, Jane. We make the assignment
Jane = *Al. With this, Jane acquires the content of whatever Al

is pointing at. But the inverse of the pointer operator, *, is the ad-

dress operator, &.

Soif Al = &Joe then *Al = *&Joe = Joe = Jane.

It is necessary to declare each of the participants. These are:
int Joe, Jane, ¥Al; /¥ Why is *Al an int? */

Let’s write this into a brief illustrative program:

#include <stdio.h>

main()

{

int Jane, Joe, *Al; /% addresses are type int %/
Joe = 18; /% knows date for the party */
Al = &Joe; /% Al has Joe's address ¥/
Jane = ¥Al; /% She wants party date */

printf(''Jane got the date of the party, May %d, from Joe \
through Al.\n'',Jane);

exit(9);
}

When you compile and run this program your screen will read:
t1Jane got the date of the party, May 18, from Joe through Al.''

(The complete program is given in Listing 1.)

A more realistic illustration is given by Listing 2. Here we em-
ploy scanf to enter two numbers from the keyboard. Pointers are
assigned to the two entries, and variable assignments made to the
pointers. Addition and subtraction are then performed using the
variable assignments.

In a real application we would not take this round about
route—we will simply perform the arithmetic with the two
variables, entryl and entry2, directly.

A frequent programming requirement is the transfer of variable
values between functions. Recollect that local variables are
known only within the function in which they are declared. If the
need arises to employ the same variable in two functions we are
faced with two options. The first is to declare the variable as a
global. If the variable is used in several functions this may be the
best approach. But frequently the most efficient is to employ
pointers to communicate a variable’s address to the needed fun-
ction.

The use of pointers for local variable value transfer is
illustrated in Listing 3. This example is similar to Listing 2 except
that the arithmetic is now carried out in two dedicated functions.
That is, the functions

int sum(addri,addr2)
int diff(addrl,eddr2)

are receptive to input from any function requiring the addition or
subtraction of two integer variables. The two integer values are
assigned to local variables num1 and num2 by the pointers *addrl
and *addr2. Their sum/difference is returned to the calling fun-
ction by the respective return statements.

The next listing, 4, carries this concept one step further. In

The Computer Journal / Issue #37

Listing 3 two arithmetic functions, int sum(addrl,addr2) and int
diff(addr1,addr2), perform the arithmetic functions of addition
and subtraction respectively. In Listing 4 these have been com-
bined into a single function, int arith(addrl,addr2).

The declarations for int arith(addrl,addr2) look the same as
those for the sum and difference functions in the preceding exam-
ple. Inside the braces, however, we see a distinct difference. The
return statements of Listing 3 have been replaced by the two poin-
ters, *addrl and *addr2, for return of the addition and subtrac-
tion values. In this example we have taken advantage of pointers
to reduce two arithmetic functions to one. Two previous
variables, plus and minus, have also been eliminated. Note their
replacement by the pointer variables in the closing printf
statement.

Compare the length of Listing 4 with Listing 3. This last exam-
ple illustrates a potential criticism. When pointer usage is carried
to an extreme our programs can become very difficult to follow.
This becomes true for the creator as well as others. The abundant
use of comments is recommended.

This far we have discussed pointers to integers. While pointers
to characters follow the same rules the application may differ
significantly.

If we have the line DEVICE = ANSIL.SYS in our CONFIG.SYS
file we can clear the screen and home the cursor in the following
manner:

char *CLRSCRN = ''\033[2J'';
printf(''%s'',CLRSCRN);

This is included in the example listings. Do not type it in your
program if your system lacks ANSI.SYS. You will also note that
some examples use the #define CLRSCRN = >’ \033{2]¢‘ in-
stead. Also that

puts(CLRSCRN) ;

functions for either declaration.

Character pointers are typically pointers to strings. A string is
identified by the double quotes at the beginning and end of the
expression. Strings in C are terminated with the null character,
“\0.” We do not include the null in our declaration as that is per-
formed by the compiler. Pointers to strings offer an impressive
range of flexibility to our programming.

Just as Jane, in our initial example program, called Al to learn
the date of the party, printf(’’%s‘‘,CLRSCRN); is an instruction
to go to the location pointed to by CLRSCRN and print its con-
tent on the screen. In this example the content happens to be an
instruction to clear the screen and home the cursor. But we can
write

char *name = ''Jane'';
printf(''%s'', name);

and see ‘Jane’ displayed on the screen.

What makes this so great is that throughout our program we
can reassign ‘name’ as often as needed. If ‘name’ is linked in with
a condition, such as scoring in a game, we can write statements on
the order of:

if(George_scr > Jane_scr) name = ''George'!';

We can see this for ourselves when we run the program of
Listing 5. This could be part of the scoring for a war game in
which the players military rank increases with hits made on the
enemy. You might want to add to the ranks right up through five-
star general.

The utility of string pointers provides an excellent lead into the
array. In the next segment of this series we will learn the
declarations:

char *pame = ''Jane'';
and
char name[] = ''Jane'!';

are one and the same.

£(2IppBy ., U\ "Pg ST 90UBISJJTP ITdUL,,)J3ured
{(TIPDPBx‘, U\ "P¥ ST PagalUs SIsqUnU OM3 SY3 JO ums ayr,,)Jrutad
/% OTI9WUITI® 3DUBIS8IJTP DUB UNS XOJ x/ {(2IpPBfTIPPB)UITIB
{zh1yusy = zappe {JAIUS8Y = TIpp®
/% %% S9SSaIppB AIlUL 03 ZappB ‘TJIpp® SI93uTod USTSSE xx %/
f(zhagusy ¢, ,p%,,)Jueds
(11 @€ PUB @z UsaMIaQ JOQUNU B Je%uy, ,)sind
{(TA13usy ¢, ,pg,,)Jusds
(41 1@z pus @T Ussm}aq Jaqunu B J93uy,,)sind
£(N¥OSHTO ¢y .8%. .)J3utad
{zappex ‘TIppey ‘gAIrue ‘TAajus jul

2w

(ute
/% == weadoad uifsg == x/
/% d83T0 USBIDS ISNV SOQ SW %/ ¢, LZIEEB\ .. = NYOSHIO# IB8UD
<UOTpPISy apNTOUTH

/% SuIniad puw sTTBO UOTIoUNg ATUO IBIUTOJ xx

2 S e 0" YXT Uld »/

¥ BUT4STT

f(TuUnu - Zunujungad

f2Ippex = Zunu {TIppex = Tunu
/% ¥x ZIPPBx ‘TIppey sIajutod O} $3TQBTIBA USTSSB %% %/
fzunu ‘Tunu Jut

}

{ZIppey ‘TIppBx JUT

(2apPE‘TIPPR)IITP JUT

/% == S8TJI3U8 dUF JO 80USISJJTP SUT UTRIQ) == x/

1u
qu

—~—

f(gunu + TWNU) ULINYBI
f2Ippex = cunu fTappex = TUNu
/% %% ZIPPBx ‘TIppBy SI3jUTOd 03 SOTqBTIBA USTSSB xx x/
fZunu ‘Tunu Ut

1
{ZIPPBy ‘TIPPBy JUT
(2appe‘Tapps)uns Ul
S9TJI3US Y3 JO WNS 8Ysy UTBIQQ == x/

~

*
It
1t

£(0)11x0

f(snutw’, U\ ‘pg ST 9OUSIBFJTP JIT8YL,,)Joutad

f(snTd¢, ,u\ 'py ST palslUs SJIAQUNU OM} U} JO uwns 8yl)Jyutad
{(2IppPBTIPPB)JITP = SnUTU

f(e2apps‘Tappe)uns = sard
f2L13Uey = zappe {TAI3USy = TIppe

/% %% S9552JppB £I3Us O} ZIpPPB ‘TIppe SIajuTod USTSSB xy x/

f(gfayusy ¢, ,p%,,)Jusos

()i @€ pus @z UseMIaQ JBQUNU B I83ug, ,)sand
f(Th13uey ¢, ,p%,,)Jusos
(i1 @2 PUB QT US9MIAQ JBQUNU B zatuy, ,)sind

£(NOSHTO ‘. 18%.,)J3utad
fsnutw ‘snid quy
f2appex ‘Tappex ‘ZAIUS ‘TAIIUS JUT

}

(Yutsu

/% == weadoad utfeq == x/

/% JIB8TO USBIOS TSNV SOQ SW %/ ¢4 LZIEEGE\ 44 = NHOSHIO® IBUD
£()33TP YUt

f()uns jut

<U°OTP3S> 9PNTOUTH
/% Sa1qelJdea Jsjutod YT STTBO UOTIOUN] xx
¥¥ TS me—m——————e—eee—o oo 0T EXTHId #/

¢ 8utysi]

f(@)rrxe
f(ans‘, U\ 'pg ST 90UBIBIITP ITAUTL,,)J3uTad
f(ppe‘, U\ "p§ ST palojUs SISQUNU OMY BY} JO UNS Uy,)Jrutad
fTUnu - Zunu = qns
fZunu + TUnU = ppe
{2IppBY = ZUNU {TIppex = TUnu
/% %% CIPPBx ‘TIPPBy SI34UTOd O} SOTQBTIBA USTSSE xx x/
fzL1juey = zappe {TAIIUSY = TJIpPP®
/% %% S9558JppB AI3Us 0% ZJppe ‘Tappe sxaiutod USTSSB xx x/
f(zh1rusy ¢, ,p%,,)Jusos

(1 Q€ pue @z Usem}eq JaquNU B as3uy, ,)sind
f(Thajusy ¢, p%,,)Jueds
(., (g puB QT UsBMIAQ JIBQUNU B 1e%uy, ,)sind

f(NHOSHTD ‘. .S%,,)33utad
fqns ‘ppe fzunu ‘Tunu Ul
£2IpPRx ‘TIpPpBx ‘ZAIjUS ‘TAIGUS UT

}

(Yutsu

/% == wexBoxd uifag == x/

/% JBITD UsdIOS TSNY SOQ SW %/ £, r2]1C€E€@\ 1« = NHOSHID¥ JIBUD

<UOTpisy opnloutry
/% ndur paeogqfey 03 paulTSsB SIIUTOJ xx
¥¥ TS mmmmm—m—mmee————me—ea 0" ZXT HId »/

g 3ur3stT

{@)31x8
f(ouBp‘, U\ *TY UBnoays sop wox] ‘py Key ‘93sp Ayaed ayy 108 auep, , ygyurad
£ (NHOSHTD) sand
{1¥x = auep
foory = 1y
f8T = 90p
fTyx ‘o0(0 ‘susp jutr
}
()Yutsuw
/% == wsaBoxd uifag == yx/
/% IBSTO USda08 ISNY SOQ SW #/ ¢,,L21€E€0\ ., = NHOSHIOx I8UD
<UroTpisy opnTouty
/% °"STU3 uBU} JSTTBWS oU 393 soTdweXs JVIUTOJ xx
*¥ O°TXE HId */

T 8ut1stT

The Computer Journal/ Issue #37

exit(0);

}

/% Obtain the sum and difference of the two entries == ¥/
int arith(addri,addr2)
int ¥addrl, *addrl;
{
int numl, num?;
/% ¥¥% assign variables to pointers *addrl, *addr2 ** ¥/
numl = *addrl; nume *addr2;

*addrl = (numl + num?);
*addr2 = (num2 - numl);
return;
}
Listing 5
/% PTR_EX5.C ==-e—mmmmmmmeee *¥%
¥% String pointers enjoy versatility ¥/

#include <stdio.h>

char CLRSCRN = ''\@33[2J''; /¥ MS DOS ANSI screen clear function ¥/
char ¥RANK = ''PRIVATE'';
main()
{

int run = 1, score = 600;

puts(CLRSCRN) ;

printf(''Show us your stuff, %s\n'',RANK);
do

new_rank(score);
printf(''Enjoy your promotion to %s.\n'',RANK);
score += 600;

if(score >=3000) run = 0;
3
while(run) ;
exit(0);
}
/* == increase rank as score adds up == ¥/
int new_rank(up)
int up;
{
if(up < 1008) { RANK = ''CORPORAL''; return; }
else if(up < 170@) { RANK = ''SERGEANT''; return; }
else if{up < 240@) { RANK = ''LIEUTENANT''; return; }
else if(up < 3400) { RANK = ''CAPTAIN''; return; }
}

Summary

In this segment we learned that the
unary operator ‘&’ preceding a variable
name defines the address of the variable.
An “*’ preceding a variable name tells us
the variable is a pointer to an address con-
taining a value assigned to that address.
The ‘*’ is said to be an ‘‘indirection”’
operator. The type of the value at that
location is the type of the pointer
declaration. Thus:

int *addril;

declares the content of what is pointed as
type int.

Pointers lend flexibility to our
programs and contribute to their efficien-
¢y in important respects. They can also
contribute to difficulty in following the
program’s sequence of operations later
unless we are careful. Comments are help-
ful in avoiding this difficulty.

Examples of pointer usage for integer
and character variables are provided in
several program listings. Compiling and
executing the programs will be helpful in
grasping the pointer concept. A careful
examination of the program listings is
recommended.

A valuable reference for further pointer
study is:

C Primer Plus by Mitchell Waite,
Stephen Prata, and Donald Martin of
“The Waite Group.” Published by
Howard W. Sams and Company. Revised
edition 1987. A

If You Don’t Contribute Anything....

....Then Don’t Expect Anything

The Computer Journal / Issue #37

TCJ is User Supported

The ZCPR3 Corner
by Jay Sage

The main topic for this column will be the second installment of
the discussion of ZFILER, the Z-System filer shell (Yes, I'm
going to fool you all by actually doing as I promised last time!).
As usual, there are several other items I would like to discuss
briefly first. The original list included the following: (1) a Z-Node
update; (2) a hint on patching those hardware-specific utilities
provided by computer manufacturers that don’t work right under
NZ-COM so that they will work; (3) my views on the appropriate
way for Z-System programs to be coded for compatibility with
various stages of evolution of ZCPR3; (4) an update on making
PRL files without a PRL-capable linker; and (5) a suggestion to
programmers for how to deal with bad-directory-specification
errors under Z-System. As usual, including all this material put
TCJ’s ink supply at risk, and I had room only for the first two
items. Now that I have finished the article and am coming back to
hone this section, I also have to add that I did not have room to
complete the ZFILER discussion; the topics of customization and
configuration will have to wait until another time.

Z-Node Update

As I mentioned in a previous issue, I have been hard at work
trying to survey the Z-Node remote access systems (RASs) and to
revitalize the network. It was Echelon’s creation of that network
that first got me started as a Z-System activist, and I continue to
feel that it is the single most important source of mutual support
for users and developers of the Z-System.

My list of currently active nodes is reproduced in Listing 1. I
have added three new columns to Echelon’s original format. The
one on the far right shows the last date on which operation of the
system was verified. The column to its left indicates for nodes ac-
cessible by PC-Pursuit the code for the outdial city and the
highest bit rate supported for that city.

At this point I have at least attempted (usually several times) to
call every North American Z-Node on Echelon’s old list. Where
contact was made, I requested that the sysops register with Z
Systems Associates, and the ones who have done so are
designated by an ‘““R’’ in the leftmost column. For this listing I
have retained a number of systems that seemed still to be in-
terested in the Z-System but have not yet registered. However, if I
do not hear from them, they will be dropped from the next list.
So, if you use one of those nodes (or one of the nodes I have
already dropped), please let the sysop know that you want him to
continue as a Z-Node, and suggest that he delay no longer in
registering. Once we have all the sysops’ names and addresses, we
can start to think about things like a software distribution chain
to make it easier for the nodes to stay current with Z-System sof-
tware developments. Many of the boards I called had only very
old versions of programs.

I would like to extend a special welcome to several new Z-
Nodes, and I look forward to doing this in each column as more
new nodes come on line. Bob Dean has for some time run the ex-
cellent Drexel Hill NorthStar system in Drexel Hill, Pennsylvania,
just outside Philadelphia. When I saw what an enthusiastic Z-

System supporter he was, 1 asked Bob if he would like to become
a Z-Node. He was delighted and has joined the network as node
number 6. Ted Harmon in Minneapolis has been working for
some time at getting his node (#80) up, and I hope that he will be
in regular operation by the time you read this. So far I have not
succeeded in connecting with his node.

Bob Cooper in Ventura, California, is the newest node (#81),
and from many voice conversations with him during the past
couple of months I know how enthusiastic Bob is. His node is not
in full scale operation. Since newly commissioned systems
generally have fewer callers than established systems, their sysops
would, I am sure, especially appreciate your calls.

Patching Programs for NZ-COM

As I described in an earlier column, NZ-COM creates a Z-
System automatically from the host CP/M-2.2 system by setting
up a virtual system underneath the original one and forwarding
calls presented to the virtual BIOS (basic input/output system,
the hardware-specific portion of the operating system code) to the
“real”” BIOS except for warm boots, which are intercepted to
prevent a reloading of the host CP/M system. This produces a
software environment that is indistinguishable from a manually
installed Z-System, and all programs that adhere to CP/M or Z-
System standards should run perfectly.

There is, however, a class of programs that generally do not
follow those rules. These are most often utilities supplied by the
manufacturer of the computer to perform special operations,
such as configuration of the hardware. They usually make assum-
ptions about the internals of the operating system code—in most
cases, the BIOS—under which they are running. (Regrettably,
they usually take no steps to verify that the environment is what
they expect—see Bridger Mitchell’s column in TCJ #36.)

Programs of this type generally do not run correctly under NZ-
COM, just as they would not run correctly if the user rewrote his

Jay Sage has been an avid ZCPR proponent since version 1,
and when Echelon announced its plan to set up a network of
remote access computer systems to support ZCPR3, Jay volun-
teered immediately. He has been running Z-Node #3 for nearly
Jfive years and can be reached there electronicaily at 617-965-7259
(on PC-Pursuit) or in person at 617-965-3552 or 1435 Centre St.,
Newton, MA 02159.

Jay is best known for his ARUNZ alias processor, the ZFILER
Jfile maintenance shell, and the latest versions 3.3 and 3.4 of ZC-
PR. He has also played an important role in the architectural
design of a number of programs, including NZ-COM and
Z3PLUS, the new automatic, universal, dynamic versions of Z-
System.

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve
problems in signal, image, and information processing.

The Computer Journal / Issue #37

or her BIOS without taking into account the assumptions the
manufacturer made as to the location of certain data structures in
the BIOS. (This same problem is less likely to occur, I believe, in a
Z3PLUS Z-System running under CP/M-Plus, because Z3PLUS
operates as an RSX, which was a fully defined system facility un-
der CP/M-Plus. Manufacturers’ configuration utilities are more
likely to understand RSXs and operate correctly under them.)

There are two approaches to dealing with this challenge. In
many cases the configuration utilities are used only when the
system is initially set up (and the newly configured system is then
stored on the system tracks of the boot disk). In other cases the
configuration utilities are used only when the system is cold
booted (i.e., powered up). These situations pose no problem, sin-
ce the hardware utilities can be run under standard CP/M before
the NZCOM command is issued to invoke the Z-System.

In some cases, however, the configuration utilities are needed
on a more regular basis. Utilities for setting baud rates, screen at-
tributes, or printer characteristics may fall into this class. These
situations can present a considerable nuisance to the computer
user, who easily becomes so accustomed to the facilities of Z-
System that he or she nearly loses the ability to operate under
vanilla CP/M. I can suggest two possible solutions here.

One approach is to put the configuration utility in a directory
that is not on the path (or to give it a new name) and invoke it in-
directly by way of an alias. The alias would initiate a SUBMIT
batch operation, as described in the NZ-COM manual, that
would first remove the NZ-COM system using the NZCPM com-
mand, then run the configuration utility under vanilla CP/M, and
finally reload the standard NZ-COM system. (If you are very
clever, you can probably make an ARUNZ alias figure out which
of several standard versions of NZ-COM is running and
automatically reload it.) This approach will give the appearance
of successful operation under NZ-COM of a utility that actually
cannot run under it. The main penalty is the extra time it takes to
exit from and return to the NZ-COM system. There is also a
problem if you have loaded a module (RCP, FCP, NDR, etc.)
that is not the one in your standard configuration. It will be lost.

The second approach is to make the utility work properly under
NZ-COM. In many cases I have been able to accomplish this
without the source code for the utility by using the technique
described below. But be forewarned; the technique will not
always work.

Most of these BIOS-specific utilities determine the address of
the data structures to be modified by adding an offset to the BIOS
warm boot entry point whose address is obtained from the warm
boot vector (jump instruction) stored at address O000H in a
CP/M system. Usually the instruction LD HL,(0001) is used to
load the address into the HL register. The problem is that under
NZ-COM this vector points to the NZ-COM virtual BIOS, and
offsets from it generally fall right in the middle of one of the Z-
System modules. Not only does the utility fail to make the desired
change to the machine’s real BIOS; it even corrupts some other
code, resulting in behavior that ranges from unpredictably bizarre
to instantly catastrophic.

The simplest corrective patch consists of replacing the LD
HL,(0001) indirect load instruction with a LD HL,WBOOT direct
load instruction, where WBOOT is the actual warm boot entry
point address of the real BIOS. This kind of patch is performed
by using some utility to scan the utility’s code for occurrences of
the three-byte sequence 2A (load HL indirect immediate), 01, 00
(the immediate address 0001H). ZPATCH is a natural candidate
for performing the search, but it unfortunately uses 00 as its string
terminator and thus cannot search for a zero byte. Perhaps Steve
Cohen will eliminate this minor shortcoming in a future version of
ZPATCH (hint, hint—I know you’re reading this column, Steve).

The next step is to replace the 2A byte with 21, the direct load
opcode. The other two bytes, 01 and 00, are replaced by the BIOS
address that you have determined previously (perhaps by looking
at the contents of memory location 0001H while running normal

The Computer Journal / Issue #37

CP/M). The low byte is entered first in place of the 01 (it will
always be 03). The second byte will be a some relatively large
number, almost always with a first hex character of D, E, or F.

Blindly replacing sequences as described above does have its
risks. Without careful inspection you cannot be sure that the
sequences are being used to perform the assumed function. If you
are an experienced coder, you can use a disassembler (such as the
one built into debuggers like DDT and DDTZ) to examine the
code. The LD HL,(0001) should be followed fairly soon by an
ADD HL,DE or ADD HL,BC to add the offset to the BIOS
structure to be modified. There is also always the possibility that
the utility gets the address it needs in some other way (for exam-
ple, LD A,(0002) will get the page address of the BIOS).

The procedure 1 just described ‘‘hardwires’’ the utility to a
BIOS at a specific address. This is fine until you someday set up a
new CP/M host system with a different BIOS starting address or
until you give this modified version to a friend with a different
BIOS. By then you will have forgotten all about these patches and
will be pulling your hair out trying to figure out why the utility
that worked perfectly before is now misbehaving. By then you
will also have forgotten exactly what was patched and will not
know how to fix the utility.

A more sophisticated patch will allow the program to work
with a BIOS at any address. This approach follows Bridger Mit-
chell’s philosophy of ‘‘know your environment.”” The patch
checks to see if it is running under NZ-COM and makes the
changes only when it is.

Scurce code for this patch, which can be applied using the
MLOAD utility, is given in Listing 2. There are several pieces of
information that you will have to determine in advance and enter
into the patch code. 1 have put all that information at the front of
the patch using macros where appropriate. If you do not have a
macro assembler, you can always put the material directly into the
code where the macros are called instead.

First, as before, you have to determine all the addresses at
which indirect loads from address 0001 have to be changed to
direct loads. These values have to be placed in the patch address
table in the patch code. Since the patch will be added to the end of
the existing utility code, you will also have to determine that ad-
dress. You can calculate this from the file size of the COM file in
records as displayed either by STAT or by SD with the “‘C’’ op-
tion. Alternatively, you can read the COM file into a debugger
and note the next free address it reports. This address must be en-
tered as the value of the symbol PATCHADDR.

Most of the utility programs I have patched this way start at
100H with a jump to the actual working code. The destination
address of that jump must be determined and entered as the value
of the symbol STARTADDR. If the utility does not begin with a
jump, then you will have to examine the code at 100H and deter-
mine the instructions that occupy the first three or more bytes.
These instructions should be entered into the REPLACED macro
in the patch. The address of the next instruction after the ones
replaced should be entered as the value for STARTADDR.

Once you have put all the necessary data into the
UTILPAT.Z80 source code, it should be assembled to a HEX
file. Then the patch can be added to UTIL.COM to make
NEWUTIL.COM by using the following command:

MLOAD NEWUTIL=UTIL.COM,UTILPAT

Be sure to save the original program, and test the new version
carefully. One additional word of caution. Some utilities cannot
be expected to work under NZ-COM no matter what you do. For
example, a utility that takes the running CP/M system and writes
it to the system tracks will fail because under NZ-COM the only
part of the CP/M system that is still present is the BIOS. For the
same reason, programs that try to patch the BDOS will fail.

ZFILER, Installment 2

Last time we covered most of the built-
in functions and had left the macro com-
mands for this time. One built-in function
was also deferred, the option command
“0”, and we will take up that subject fir-
st.

. The Option Command

When the option command letter <‘O”’
is pressed, a special options screen is
displayed. Eleven operating charac-
teristics can be changed from a menu with
the following appearance (ap-
proximately):

single replace query
group replace query
archive replace query
verify query

verify default

suppress SYS files

sort by file name

. set copied file attributes
. use dest file attributes
archive destination
search path for CMD file

RO T QEE DO W >
2 R R

We will explain the meaning of each of
these options in a moment. First a few
words about the mechanics. While the op-
tions menu is displayed, pressing the index

e Plu*Perfect Systems

der CP/M-2.2 ($75)

version)

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e New Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers (369.95)
— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

— Backgrounder II: switch between two or three running tasks un-

~ DateStamper: stamp CP/M-2.2 files with creation, modification,
and last access time/date ($50)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

e SLR Systemns (The Ultimate Assembly Language Tools)
— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+
— TPA-Based: $49.95; Virtual-Memory: $195.00

e NightOwl (Advanced Telecommunications)

— MEX-Plus: automated modem operation with scripts ($60)

— MEX-Pack: remote operation, terminal emulation ($100)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

10

letter at the left will cause the setting of
the corresponding option to be toggled,
and the new state will be shown in the
column at the right. The listing above
shows the initial state of the options in my
personal version of ZFILER. When you
are finished toggling options, just press
carriage return to return to the main
ZFILER menu. These option settings are
stored in the ZFILER shell stack entry
and will thus continue in effect through all
ZFILER operations until the command
‘X’ is used to terminate the shell.

The first three options concern how
ZFILER responds when copying (or
moving) files and a file of the same name
already exists in the destination directory.
Item A applies when individual files are
copied (commands ¢‘C”’ and “M”’); item
B applies when a group copy is performed
(commands ‘“GC’’ and ‘“GM”’); and item
C applies when performing an archiving
operation (command ‘“GA’’). If the op-
tion is ““YES’’, then ZFILER will prompt
one before existing files are erased and
give one the chance to cancel the
operation for that file, leaving the existing
file intact. If the option is toggled to
“NO”’, then existing files will be overwrit-
ten without even a message.

The next two options affect the
verification of the copied file in the
destination directory. Item D determines
whether or not the user will be asked
about verification. If this option is set to
““N’’, then the state of option E will
determine whether or not verification is
performed on file copies. If this option is
set to ““Y”’, then before each copy, move,
group copy, or group move, ZFILER will
put up the prompt ““Verify (Y/N)?”’.

The next two options affect the way
files are displayed on the screen. If item F
is set to “Y’’, then files with the ‘‘system’’
or SYS attribute will be suppressed, that
is, not included among the selected files
on which ZFILER acts. This is a
reasonable choice for this option, since
the most common use of the SYS attribute
is to make the files disappear from con-
sideration during file maintenance and
display operations. Item G on the options
menu determines whether files are sorted
first by name and then by type or vice ver-
sa. Changing this option is presently
equivalent to the “*‘A”’ command from the
main ZFILER command menu.

The next three options concern how file
attributes are treated when files are
copied. One possibility is to create new
files with a clean slate of attributes (that
is, all attributes reset: not read-only, not
SYS, not archived). This is what will hap-
pen when option H is set to ‘**“N”’ (but note
option J, which may override this). When
the attributes of the destination file are to
be set, they can be set in two possible
ways. If a file of the same name existed in
the destination directory, then its file at-
tributes could be used for the

The Computer Journal / Issue #37

copy that replaces it. This is what will be done if option I is set to
“Y’’. If option [is set to *“N”’ or if there was no matching file in
the destination directory, then the attributes will be set to match
those of the source file.

Option J can set a special override for the archive or ARC at-
tribute. If the option is set to ‘“N’’, then the ARC attribute is
treated just like the other attributes according to options H and I.
If option J is set to YES, then the destination file always has its
ARC attribute set.

There was at one time a great deal of controversy over the way
the ARC attribute is handled under ZFILER. At one time it was
always reset, so that the destination file would be marked as not
backed up. Another school of thought asserted that, on the con-
trary, the file was backed up, since there was a copy of it on the
source disk from which the file was copied. That latter argument
made considerable sense in the case of copying files from a master
. disk to a RAM disk before a work session. Here it was certainly
important to start with all files marked with the ARC attribute so
that one could easily tell at the end of the session which files had
been modified so that they could be copied back to the permanent
storage medium.

Allin all, I never understood this controversy. Both approaches
clearly have merit, and since ZFILER supports both, I saw no
reason for all the argument. Ir: a future version of ZFILER, I
think I would like to add a flag word that would indicate which
drives should automatically set the ARC flag when the J option is
set to YES. That way, the option could be made to apply to RAM
drives only.

The final item on the option menu, option K, determines how
the macro command file ZFILER.CMD (see discussion below)
will be located. There are two choices. If option K is set to YES,
then ZFILER will look for it first in the currently displayed direc-
tory and then along the entire ZCPR3 search path. This option is
useful if one wants to have different macro command files that
apply to specific directory areas. Alternatively, if option K is set
to NO, then ZFILER locates the CMD file without using the
path. Depending on how ZFILER is configured (this will be
discussed another time), the file will be sought either in the root
directory of the path (the last directory specified on the search
path) or in a specific drive/user area coded into ZF.COM. This
alternative results in faster operation, especially if the specified
directory resides on a RAM disk.

The options controlled by the option menu can also be per-
manently changed in the ZFILER program file using a patching
utility like ZPATCH. In the first page of the file, you will see the
ASCII string *“OPT:”’. The eleven bytes following this string con-
tain the startup values for the eleven options. Patch a byte to 00
for NO or FF for YES.

ZFILER Macros

Although ZFILER can accomplish many tasks using its built-in
functions, its real power comes from the macro facility, which
allows it to be extended to include any functions that can be per-
formed using combinations of other programs. This is where
ZFILER really makes use of its power as a shell. First I will
describe how the macro facility is used, and then I will describe
how the user defines the macro functions. As with the built-in
functions, macro functions can operate either on single files or on
groups of files. The single-file macro facility is well developed and
was already present in nearly the same form in VFILER; the
group macro facility is new with ZFILER and has not been fully
developed yet.

Invoking Macros

One way to initiate a macro operation on the pointed-to file is
to press the macro invocation key, which is normally the escape
key. A prompt of ‘“Macro:”’ will appear after the normal
ZFILER command prompt. At this point you have several
choices. If you know the key corresponding to the macro you

The Computer Journal / Issue #37

Listing 1: Z-NODE list

Z-Node List #49
Sorted by State/Area Code/Exchange

Revised Z-Node 1list as of December 31, 1988. An '"'R'' in the left column
indicates a node that has registered with Z Systems Associates. Report
any changes or corrections to Jay Sage at Z-Node #3 in Bostcn (or by mail
to 1435 Centre St., Newton Centre, MA §2159-2469).

NODE SYSOP CITY STATE ZIP RAS Phone PCP Verified
57 Steve Kitahata Gardena CA 90247 213/532-3336 CALAN/24 11/01/88
R 2 Al Hawley Los Angeles CA 90056 213/678-9465 CALAN/24 12/11/88
35 Normen L. Beeler Sunnyvale CA 94Q86, 408/245-1420 CASJO/12 11/01/88
25 Douglas Thom San Jose CA 95129 4@8/253-1309 CASJO/12 11/01/88
35 Norman L. Beeler Sunnyvale CA 94@B6, 408/735-0176 CASJO/12
R 9 Roger Warren San Diego CA 92109 619/270-3148 CASDI/24 12/11/88
R 66 Dave Vanhorn Costa Mesa CA 92696 714/546-5407 CASAN/12 10/30/88
R 81 Robert Cooper Lancaster CA 93535 805/949-6404 12/29/88
R 36 Richard Mead Pasadena CA 91105 818/799-1632 11/81/88
27 Charlie Hoffman Tampa FL 33629 813/831-7276 FLTAM/24 19/30/88
R 15 Richard Jacobson Chicago IL 60606 312/649-1730 ILCHI/24 11/81/88
R 3 Jay Sage Newton Centre MA 2159 617/965-7259 MABOS/24 12/31/88
80 Paul Harmon Minneapolis MN 55407 612/560-9122 MNMIN/12 down
R 33 Jim Sands Enid OK 73783 485/237-9282 11/91/88
R 58 Kent R. Mason Oklahoma City OK 73187 405/943-8638
R 4 Ken Jones Salem OR 97305 9503/378-7655 99/15/88
60 Bob Peddicord Selma OR 97538 503/597-2852 11/01/88
R 24 Ben Grey Portland OR 97229 503/644-4621 ORPOR/12 12/25/88
R 6 Robert Dean Drexel Hill PA 19826 215-623-4040 PAPHI/24 12/10/88
R 38 Robert Paddock Franklin PA 16323 814/437-5647 11/01/88
77 Pat Price Austin TX 78745 512/444-8691 19/31/88
R 45 Robert K. Reid Houston TX 77088 713/937-8886 TXHOU/24 19/03/88
12 Norm Gregory Seattle WA 98122 2P6/325-1325 WASEA/24 11/91/88
R 78 Gar K. Nelson Olympia WA 98502 206/943-4842 09/12/88
R 65 Barron Mclntire Cheyenne WY 82007 307/638-1917 12/12/88
R 5 Christian Poirier Montreal Quebec H1G 5G5 CANADA 514/324-9031 12/1@/88
R 40 Terry Smythe Winnipeg Manitoba R3N @T2 CANADA 204/832-4593 11/01/88
18 Bruce Smith Mississauga Ontario L5E 2E5 CANADA 416/823-4521
26 Robert Kunmann Belle Etoile, par St. Martin de la Brasque
84768 FRANCE, 11-33-99-77-60-15 (from USA)
69 R.C. Page Waltham Abbey, Essex, EN9 3EE, ENGLAND
R 62 Lindsay Allen Perth, Western AUSTRALIA 6153 61-9-459-0200 12/21/88

50 Mark Little Alice Springs, N.T. AUSTRALIA 5750 61-089-528-852

want to run, then you can simply press that key. ZFILER will
then construct a command line and pass it on to the command
processor for execution. If ZFILER is configured for instant
macro operation (it generally is), then macros associated with the
number keys ‘‘0’’ through ‘‘9’’ can be initiated without the macro
invocation key; the number key entered alone at the main
ZFILER command prompt will generate the macro function.

If you press the macro invocation key a second time, a user-
created help screen will be displayed. This screen generally lists
the available macro functions. You can now press the key for the
desired function, or you can press carriage return to cancel the
macro operation and return to the main ZFILER menu. The help
menu screen will also be displayed if you press the ‘‘# key. This
is a holdover from VFILER and arises in part because of the
structure of the file in which the macros are defined (more on this
shortly).

Group macros are invoked in a similar way from the group fun-
ction command line. After you have tagged a group of files, press
the ““G”’ key to enter group mode. The prompt will list only the

1

.

- - e

..

patchaddr

i
H

j

startaddr

H
H
i
i

replaced

e s e s

-

Listing 2: Utility patch source code

PROGRAM: UTILPAT -- Utility Patch
AUTHOR: Jay Sage
DATE: November 30, 1988

This patch *may* allow BIOS-specific utilities to
work under NZ-COM.

The address below must be set to the first free byte
after the utility's code.

equ 2000h

The address below must be set to the address at which
execution will continue after the patch code is
executed.

equ 0000h

; The following macro should be filled in with any opcodes

that were at address 10PH and following and had to be
replaced by the jump to the patch code. If the utility
began with a JP STARTADDR instruction, then leave this
macro blank

macro
; put instructions here
endm

The macro below is used to enter the list of addresses

at which LD HL, (@901) instructions appear that must be
patched. Replace the symbol ADDR1 by the first such
address and insert additional similar lines for any other
addresses to be patched.

3
addrlist macro
dw addrl ; Repeat for each address
endm
1dhl equ 21h ; Load-hl-direct opcode
5ah - 3 ; Offset from BICS warm boot entry

offset equ

’

’

[P

; ..to the NZ-COM signature

; The following code will be patched in at address 100h to
; vector control to the patch code.

org 100h

Jjp patchaddr

The actual patch code begins here.

org patchaddr
If NZ-COM is running, HL will now contain the ENV address.
We will need this later, so we save 1t.

14 (envaddr),hl

Now we must find out if NZ-COM is running. This is done

by looking for its signature ''NZ-COM'' at a specific offset
from the virtual BIOS warm boot entry point. If this
signature is not found, the patch can be skipped.

1d hl, (2091) ; Get possible virtual
; ..BIOS address
1d de,offset ; Offset to signature
add hl,de
1d de,signature ; Point to what the
; ..signature should be
1d b,sigsize ; Length of signature
sigloop:
14 a, (de)
cp (h1) ; Check character
inec de ; Advance pointers
ine hl
jr nz,exitpatch ; Jump if not NZ-COM system
djnz sigloop ; Loop through signature

; We get here if NZ-COM is running. Now we must make the

; necessary patches to the utility. First we must determine
; the address of the warm boot entry to the real BIOS.

; NZ-COM keeps the page address at offset 2 into the ENV.

envaddr equ $+1
1d hl,3$-3 ; Filled in by code sbove
inc nl ; Advance to CBIOS page
inc hl
1d a, (hl) ; Get page of CBIOS
1d (cbiospage),a ; Put it into code below

; Now we patch in the changes to the utility code.

1d de,table ; Point to address table

1d b,tablesize ; Addresses in table
patchloop:

1d a,(de) ; Low byte of address

inc de ; Advance pointer

14 1,a ; Put in low byte of HL

1d a,(de) ; High byte of address

inc de ; Advance pointer

1d h,a ; Put in high byte of HL

1d (h1),1dn1 ; Patch in direct-load opcode

ine hl

1d (hl),@3H ; Low warm boot address

ine hl
cbiospage equ $ + 1

1d (hl),0 ; Filled in by code above

djnz patchloop ; Loop through address list
exitpatch:

; Here we have to exit from the patch and resume execution
; of the original utility. First we execute instructions, if
; any, replaced by the patch intercept code.

replaced ; Macro
; Then we jump to the utility code.

Jp startaddr
; The following is what the NZ-COM signature should look like.
signature:

db
sigsize equ

'NZ-COM!
$ - signature

; We put the table of addresses to patch here.

table:

addrlist ; Macro with address list
tablesize equ (¢ - table) / 2

end

12

The Computer Journal / Issue #37

built-in group functions, but if you press the macro invocation
key, you can proceed as described above for single-file macro
operations, except that the macro function will be performed on
each of the tagged files.

The group macro facility works a little differently than the
single-file macro facility. Since the command line would generally
not be long enough to contain the commands for all the tagged
files, the group macro facility works by writing out a batch file for
processing by ZEX or SUBMIT. In this way there is virtually no
" limit to the number of files on which group macros can operate.

There are many configurable options (described below) that are
associated with the group macro operation. These include the
name of the ZEX or SUB batch file, the directory to which it is
written, and the command line that ZFILER generates to initiate
the batch operation. The NZ-COM version of ZFILER uses a file
called ZFILER.ZEX and the command line “ZEX ZFILER”.
-The Z3PLUS version, under which ZEX will not run, uses a file
called ZFILER.SUB and a command line of ‘SUBMIT
ZFILER”.

Since macros (and the main menu ‘‘Z” function) work by
passing commands to the command processor, file tags will be
lost in the process, and when ZFILER resumes operation, it starts
afresh. In a future version of ZFILER, I hope to preserve the tag
information by having it optionally written to a temporary file
(the shell stack entry is far too small) and read back in when
ZFILER resumes.

Defining Macros—The CMD File

Now let’s learn how to define the macro functions we want. As
I indicated earlier, the macros are defined in a file called
ZFILER.CMD (the ZFILER ComManD file). In the version of
ZFILER distributed with NZ-COM and Z3PLUS, the CMD file is
searched for in the root directory of the ZCPR3 command search
path. As described earlier, the option menu allows the entire path
to be used. There are also some additional configurable options
that will be discussed another time. You must be sure to put your
ZFILER.CMD file in the appropriate directory. If the file cannot
be located, you will still get the macro prompt, but, after you
have specified a macro key, the error message ‘‘ZFILER.CMD

.NOT Found”’ will be displayed.

The ZFILER.CMD file is an ordinary text file that you can
create with any editor or wordprocessor that can make plain
ASCII files (WordStar in nondocument mode, for example). The
CMD file has two parts. The first part contains the macro com-
mand definitions; the second contains the help screen (described
earlier).

In the first part of the CMD file, each line defines a macro. The
character in the first column is the key associated with that
definition (case does not matter). Macros can be associated with
the 10 number keys, 26 letter keys, and all printable special
characters except for ‘“‘#”’ (explained below). The space character
and all control characters are not allowed. Owing to an oversight,
the rubout character can be associated with a macro!

After the character that names the macro there can be any
number of blanks (including zero). If the first non-blank charac-
ter is *‘!”’, then the “‘strike any key’’ (shell-wait) prompt will ap-
pear before ZFILER puts up the file display after a macro com-
mand is run. This should be used whenever the macro will leave
information on the screen that you will want to read. After the
‘1>’ there can again be any number of spaces. Any remaining text
on the line is taken as the script for the macro command.

The second part of the CMD file starts when a “‘#’’ character is
found in the first column (hence the exclusion of that character as
a macro name). Once that character appears, all remaining text,
including text on the line, will be used as the help screen. Since
ZFILER will add some information to the display (the name of
the pointed-to file and a prompt), you will generally want to keep
the help screen to no more than 20 lines, including an extra blank

The Computer Journal/ Issue #37

line at the end for spacing. With some experimentation you will
get the hang of designing this screen.

Macro Scripts

ZFILER macro scripts are similar to those in ARUNZ and in
the other menu shells (MENU, VMENU, FMANAGER) in that
parameter expressions can appear. The critical parameters—the
ones that implement functions that cannot be achieved any other
way-—are those that convey information about the directory
currently displayed by ZFILER and about the pointed-to file.
Parameters consist of a ‘‘$’’ character followed by one of the
characters listed below.

User prompt parameters
! User input prompt
" User input prompt
Parameters for directories

- currently displayed directory
C DIR form
D Drive letter

U User numbvr

- home directory (from which ZFILER was invoked)
H DU form
R Home DIR

Parameters for pointed-to file

P Full information (DU:FN.FT)
F File name (FN.FT)

N File name only

T File type only

Special parameters

! GO substitution indicator
$ The dollar character

The parameters are listed in a special order above, and we will
explain that later. First we will just present the meaning for each
parameter.

The parameter expressions $°’ and $’ are used to display a
prompt message to the user and to read in a response string.
Single and double quotes are equivalent. Once the prompt
parameter has been detected, all subsequent characters up to one
of the quote characters are displayed as the user prompt. Thus, if
I am not mistaken, there is presently no way to put either quote
character into the prompt. The end of the line or the end of the
file will also terminate the prompt.

No special character interpretation is performed while expan-
ding the prompt. If you want to make fancy screens, you can in-
clude escape sequences and some control characters (obviously
carriage return won’t work). In the future, ZFILER should be
enhanced to provide a means to generate all control characters, to
allow special characters to invoke screen functions based on the
current terminal definition, and to expand directory and file
parameters in the prompt.

Now for the directory parameters. Parameters C, D, and U
return information about the currently displayed directory, while
H and R return information about the home directory, the one
from which ZFILER was originally invoked. PLEASE NOTE:
macros always operate from the home directory. The reason for
this is that ZFILER can display directories with user numbers
higher than 15 even when it is not possible to log into these areas.
If you want to operate in the displayed directory, then your script
must include an explicit directory-change command of the form
““$DSU:” at the beginning (or “‘$C:’’ if your system requires the
use of named directories) and a command of the form ““$H:”’ (or
““$R:”’) at the end.

One special note about the parameters that return directory
names. If the directory has no name, then the string
‘“NONAME"’ is returned. This will presumably not match any ac-

13

tual name and will lead, one hopes, to a benign error condition.
These parameters are included only for systems that do not allow
directories to be indicated using the DU form (I hope that few if
any systems are set up this way).

Now we come to the four file name parameters. They allow us
to generate easily the complete file specification or any part of it.
Note that “‘$F”’ is not quite the same as ‘‘$N.$T”’. The latter
always contains a dot; the former does not if the file has no file
type.

Finally, we have two special parameters. ‘“‘$$” is included to
allow a dollar sign character to be entered into the script. ““$!”’ is
a control parameter that is used only when a group macro is
executed. If it is placed immediately before a token (string of con-
tiguous characters), then that token will be replaced by the string
“GO”’ on all but the first expansion of the script. This allows
group macro scripts to operate faster by avoiding repetitive
loading of a COM file. It must be used with great care and con-
sideration, however, for reasons that I will not go into here.

Rules for Script Expansion

ZFILER follows a specific sequence of steps when expanding a
script, one that gives it a special feature that, I would guess, few
users are aware of. The first step in the expansion is to process
only the user-input prompt parameters, substituting for the
prompt whatever the user entered in response. This results in a
modified script that is then processed by the second step in the ex-
pansion. Because the expansion is handled this way, the user in-
put can include ZFILER script parameters! Thus the script can be
used to write a script. You will see an example of this later.

The second step in the expansion is to substitute values for the
directory parameters, which are a kind of constant. They do not
change as a function of the pointed-to file. Finally, in a third step,
the remaining parameters are expanded. For group macros, this
final step in the expansion is repeated for each of the tagged files.
The file parameters are expanded differently for each file, and,
starting with the second tagged file, the ‘‘$!”’ parameter causes
“GO’’ substitution.

Macro Examples

Listing 3 shows an example of a ZFILER.CMD file, one
designed to illustrate some techniques of macro writing. While
writing this article, I discovered that one can include blank lines as
shown to make the CMD file easier to read. The help screen part
of the listing is taken from my personal script file (which, I have
to confess, I have not really worked very hard at). The macro
definition part of the listing includes only a few of the definitions.

The macro ““Q” is included to illustrate a very simple, but
useful, type of macro. It invokes the very powerful file typing
program QL (quick look) on the pointed-to file. This is handy
when you want more powerful viewing capability than that of-
fered by the built-in ““V”’ command. QL can handle crunched
files and libraries, and it can display text or hex forward or back-
ward.

Macro “‘U’’ uncompresses a file. It illustrates a more complex
script that involves flow control and parameters that extract in-
dividual components of the pointed-to file name. It tests the file
type to see if the middle letter is ¢‘Q’’ or ““Z”’. In the former case,
it unsqueezes the file; in the latter, it uncrunches it. The uncom-
pressed file it put into the source file’s directory.

Macros S, K, and B illustrate the use of input prompting. The
first one allows the user to specify the file attributes to be set.
Note that the prompt includes a helpful reminder of the syntax
required by SFA.

Macro K crunches files to a user-specified destination. It also
illustrates how one logs into the currently displayed directory. I
do this here so that a null answer to the prompt (i.e., just a
carriage return) will result in the crunched files being placed in the
currently displayed directory rather than in the home directory, as
would otherwise be the case (since that is where the macro runs
from, remember). As a result, however, this macro will not
operate properly in user areas above 15 under BGii or versions of
the command processor that do not allow logging into high user
areas.

Macro B performs a slightly more com-
plex function. It not only compresses the

Listing 3: Example ZFILER.CMD file. pointed-to file to a specified destination
- directory, but it then marks the source file
Q al $p as having been backed up. A combination
s .) .]) e of the group archive built-in command (to
U I if $t=2q?;$!sys:uf $p $dPu:;else;$P!sys:uncr $p $dPu:;fi tag files that need backing up) and a
S 1 $!sfa $p $'' SFA Options (/o,0.. 0=ARC,-ARC,R/0,R/W,SYS,DIR): ' group macro B (to perform the backup)
K ! du:;$!crunch $f $''Destination directory (DU:) -- '';$h: gives the ZFILER user a way to back up
B du:;crunch $f $''Destination directory (DU:) -- '';sfa $f /arc;$h: files in crunched form on the backup disk.
Macro M is included to show that a
M | /move $p $''Destination directory for move: '' ZFILER macro, when it needs to do
something more complex than it is
X 1 du:;:$n $'' Command Tail: '';$h: capable of doing all by itself, can pass the
Z ! $d%u:;$'' Command to perform on file: '' $f $'' Tail: '';$h: task to an ARUNZ alias. The MOVE alias
0 | $''Enter ZFILER macro script: ' first determines whether the source and
SAMPLE ZFILER MACRCS FOR TCJ L .
destination are on the same drive. In that
@. on-line macro A. set Archive bit N. NULU case, MOVE.COM is used to perform the
1. LPUT B. Backup (cr/sfa) 0. move. Otherwise, the source file is copied
2. ZBDASM to COM C. CRC P. Protect to the destination and then deleted. What
3. Z8PASM to REL D. Date display Q. QL we have, therefore, is a MOVE command
4. Compare Files E. Edit R. that frees the user of the responsibility of
5. F. 5. SFA worrying about which drives are in-
6. G. T. Type volved—another example of how Z-
7. H. U. Uncompress . .
8 I V. VLU System can free you from considerations
5. I ¥ that need not concern you, that do not
K. Krunch X. eXecute require human intelligence to decide.
L. 1DIR Y. The final three macro examples are
M. Move Z. run command execution macros. Macro X causes the
pointed-to file to be executed. A more
:: ’ ZP’3>'('gg(’)MPT DUDR[IJ§§R PNDU;§ N.FT FTFN%§T sophisticated version might check to make
ot PRONPT S HOE sure that the file type is COM. I opted for
(Continued on page 31)

14

The Computer Journal/ Issue #37

Information Engineering

Basic Concepts
by C. Thomas Hilton

‘It helps to know what you want to do before you make the at-
tempt.”’

Such a statement, as an opening comment, may seem a little
silly to some of you. I can assure you it is anything but silly. One
of my clients takes great pleasure from assisting others in the
development of information systems. The terminology is there,
unfortunately, the client has not been able to present any form of
definition or guide for his own project, seven months after
retaining professional assistance.

I am not belaboring the obvious. A great deal of time and
money is wasted by refusing to deal with the obvious. More often
than not, the layman can accomplish any project without
professional help, if he is willing to give some thought as to what
is really needed.

This issue is intended to convey a few rudimentary concepts.
The discussions may be a bit pedestrian for some of you. If you
find this to be the case, feel free to jump over them, returning to
the introductory section when needed.

Field Definition Worksheets

The field definition worksheet is to Information Engineering,
(IE), what a flowchart is to large-project programming. Before we
can even begin to think of the software development tools we will
use in a project, before we think of the hardware to specify for the
project, and long before we think about hiring professional help,
a study of our project’s needs must be done. Knowing what is to
be accomplished is the responsibility of the client, not the
developer.

“Knowing what is to be accom-
polished is the responsibility of the
client, not the developer.

The first step in any project begins with an idea. The Field
Definition Worksheet, (FDW), is nothing more than a simple list
of data types, called *’fields‘* that describe a piece of data, which,
when combined with other fields, creates a record, or collection
of related information.

Figure 1 shows how you might create a Field Definition
Worksheet, the first and most important step in any information
system.

The Name Field
The first area, shown in Figure 1, is the ““Name Field.”” This
area is where you put the name of the data field you are thinking
about. At this point clarity is more important than correctness,
when deciding upon the name of the field. Select a name that
clearly relates to the data this field is to contain. Keep in mind

The Computer Journal / Issue #37

Figure 1: A field definition worksheet

FIELD DEFINITION WORKSHEET

Project:

Name Type Meaning Source

that some software tools cannot tolerate long field names. Some
tools require that field names be no more than eight characters in
length. Many products allow field names longer than eight
characters. But, select a field name that can later be abbreviated if
the need arises.

The Type Field
The second area, of the FDW, will describe the data type of the
field of information you are thinking of. The basic data types,
common to all products, are numerical, character string, and
date.

Numerical Data Types

A field declared as numerical should consist only of numbers.
Alphabetic characters cannot be used in a numeric data field. A
part number such as ‘“A-256"’ could not be held in a numerical
field. If your piece of information requires an alphabetic charac-
ter, or punctuation of any kind, you will be required to use a
character string type of field.

Many products deal only with integer or decimal data types.
These are numbers which can be expressed as ‘‘whole’” numbers,
or numbers with a decimal point. These products may not be able
to deal with negative numbers such as -3. To deal with these types
of numbers you may also be required to use a character string to
represent a negative, or less common numerical representation.

String Date Types

A “‘string’’ data type may consist of nearly any character you
can access from the computer’s keyboard. The ‘‘alphanumeric,”’
“‘character,”” or ‘‘string’’ data type may be considered as a
generic or “‘universal’’ data type. If there is some confusion over
an actual data type, as there may be at this stage of our ex-
ploration, use an alphanumeric character string data type. All sof-
tware products understand this designation.

Date Date Types

The “‘proper’’ way to represent a date value is matter of some
controversy. The easiest way to get into trouble, and lose data
when changing tools, is to use a ‘‘date’’ data type. Nearly every
product has its own way of dealing with dates. Dates can be
represented by ‘‘universal’’ character strings. If you are confident
that you will not be changing database products, then there is lit-

15

tle to lose from using date types anytime a date field is required.
Most products will be able to convert a date type to an
alphanumeric data type for export to another format. When in
doubt, check your product’s manuals, or use an alphanumeric
data type.

The Meaning Field
The ‘“‘meaning’’ field of the form will save you many questions,
delays, and misunderstandings. Keep in mind that information on
the worksheet may appear obvious to you, but not to someone
else. The meaning of a piece of data is valuable in deciphering a
field name, selecting a final data type, and lends much to the un-
derstanding of the purpose of your data.

The Source Field

The final area of the form is where you consider where you will
* acquire the data. Ask yourself, ‘“‘where will this data come
from?”’ Everyone has a tendency to be too creative when defining
fields for their information system. Even some well meaning
manuals tell you to include every field you can think of. This is
not wise advise to follow. If you can create the data within your
own department, or create it yourself, then you have little to con-
cern yourself about. If you have to look beyond yourself, or your
department, then you will have to ask yourself if you are willing,
or able, to afford the time and effort to seek out the data from an
external source. In a corporate or bureaucratic structure, politics
may come into play, denying you access to data. If you cannot
consistently acquire data, then it is said that you ‘‘cannot sup-
port’’ it. You would be well advised to seek another way of
dealing with a desired data concept. In one client’s application I
was forced to delete over one hundred data fields. The client had
neither the desire, nor the wherewithal to acquire the data. The
firm rule for this area of the form is, “‘If you cannot support the
data for every record in your database, you cannot include the

field!’’ Do yourself a favor, take these words to heart.

”If you cannnot support the data for
every record in your database, you can-
not include the field!*

Developers Get Paid For Thinking

The commercial developer is paid for thinking, and of course a
little obligatory development work. Most often the professional’s
task is only to force the client to think! There is little cause to pay
someone else to do your thinking for you!

With the FDW worksheet concept fresh in mind, add all the
data fields you feel are required in your information system. As
you are developing the first version of the worksheet, keep a men-
tal priority tuned to the clarity of field names, and their meanings.

The Demon Called Redundancy

Let us assume you have your basic field list defined. Look now
at all the fields together, as opposed to individually. The first pass
through the design process required that you be concerned with
having enough information to accomplish the task at hand. The
next review of your worksheet should be more critical.

Each field in the worksheet represents a portion of an input
form which must be prepared, a report that must be constructed,
computer processing time, and disk storage space.

Go over your field list and see if one, or more, fields actually
represent the same information. Can several fields be combined
to convey the desired information? By example, let us deal with
the data concept of the type of diploma a person has received, as

16

part of an employment application. The rough draft of the FDW
will probably have the questions:

20. Did you finish High School (Y/N)?
21. Do you have a High School Diploma (Y/N)?
22. Have you received a G.E.D. (Y/N)?

With thought, it may be found that if more time were spent on the
question, fewer fields may be required to represent the same in-
formation.

Each of the three questions in the example ask for a single
character response, either a ‘Y’ or an ‘‘N’’ to represent a
positive or negative response. This representation ‘‘costs’’ three
characters from three fields. “‘what-if”’ the structure of the con-
cept were altered a little bit?

20. Tell us about your educational background.
Have you received:

(D) A High School Diploma
(G) A G.E.D.
(N) Neither

In this version of the concept three fields have been reduced to
one, but still return the original information. This type of data
design is compatible with optical document scanners. Data for-
mat compatibility with optical document scanners will be an im-
portant topic we will deal with later in this series.

Another example would be a person’s, or product’s age. In-
stead of asking for a birth date and current age, why not ask only
the birth date? If the software tool has a means of working with
dates, the ‘‘age’’ field can be calculated. If you elect to do
calculations with dates, and need the result of the calculation, be
sure to select a ‘‘date’’ data type for the source data field on your
worksheet. Most systems do not ‘‘charge’” you, in permanent
storage, for calculated fields. They are only displayed in your
forms and reports. They are never actually stored on disk. If you
feel calculated fields are a clever way to reduce your information
“‘overhead’’ you would be correct. But, use calculated fields
wisely, and be sure to note in the “SOURCE”’ area of your FDW
that the field is ‘‘not real’’ but calculated. Taking the time to be
perfectly clear in noting which fields are calculated will save you
much grief.

Going Generic

When your final field list is complete, and you are satisfied with
it, take a few minutes to go over it one more time. See if there is
any way to make things more compact, more useful, and more
generic. Generic? What I mean here is to try to plan ahead.

Will your project “‘grow’’ to a point where you will need to
move it, because the initial software cannot handle the amount of
data you have collected?

Will you ever want to do research on your data?

Will your reports require graphic presentations?

Here is where the clever selection of field data types is critical.
The primary pitfall of the novice designer is the random use of
“‘date’’ data types. Do you have any date fields that you will NOT
use in calculated fields? The best policy is to use a character string
data type for anything that is recorded, but never actually used in
calculations, if you are thinking of exporting your data to another
database product.

Organizing Your Data Tables

Having defined the data fields you will want to use in your in-
formation system, the next step is to organize your data into data
tables.

A data table is simply a collection of related information. The
concept of the data table has become common in popular sof-
tware product releases. The purest representation of the data
table concept is found in PARADOX. It has been said, and I tend
to agree, that all other table based products attempt to imitate the
PARADOX system. Our discussions will directly refer to

The Computer Journal/ Issue #37

PARADOX, though the concepts presented may be applied to
other table based products.

The Relational Database Concept

The foundation concept of the relational database, and data
table structure is simple: keep the data pure, concentrated in
focus, and isolated. For example, in dealing with people, we
would want to keep information that identifies the individual
apart from all other data. While other data may relate to the in-
- dividual, such as test results, we would not want to include the
test results in the same table as the personal information. The
relational data table may be compared to a properly designed
paper filing system. Personal information goes into the personal
file, test results into the test results file. If we just threw
everything into a file with a client’s name on it, information
would be accessible only in relation to the individual. This is a fine
system for collecting paper, and filling file cabinets. Yes, I know,
“““that is the way we have been handling information since dirt was
new.”’ This is something I face every day at the office! This way
of handling information is also the single most important factor
as to why it may take a person hundreds of man hours to answer a
simple research question, and why his reports are never on time!
The paper data has to be located, pulled from the individual’s
file, processed, and returned to the file. This is a wasteful process.

With a relational database, it is simple to have the computer
run around and collect all the available information on an in-
dividual. It is equally as easy to deal with the collection of specific
data that does not actually relate to any unique individual.
“Paper Think’’ should become a dead art, never applied to In-
formation Engineering.

By keeping data together and isolated, we can do research on
individual data without wading through unrelated information.

How Many Fields Should be in a Data Table?

The general “‘rule of thumb’ is that a data table should be
reorganized if it contains more than 15 or 20 fields of closely
related data.

It is better to have more tables, with fewer fields, than it is to
create large tables of data. My personal preference is to keep data
tables small enough so that all the data in a table may be seen on a
_single screen. This concept is seldom possible, but it is a good goal
to strive for.

With products, such as PARADOX, you will discover that you
can deal more effectively with tables with fewer fields.
PARADOX makes it as easy to deal with many tables, with fewer
fields, as it is to deal with a single table with many fields. There is
no penalty for storing information about a single subject in many
different tables. This is what a relational database is all about!

It should be obvious that if a product does not easily accom-
modate these concepts, then it not a product you want to work
with.

This Issue’s Example

The information system we will use as an example in this issue
will concern the needs of a Career Development Service, located
in a correctional institution. The client has thus far been unable to
demonstrate a knowledge of his needs, or provide marginal direc-
tion. He has opted to retain professional assistance. All in all, we
are left to our own devices. This example represents a true ‘‘worst
case’’ scenario for the Information Engineer.

The client has indicated that his project has been funded with
public moneys. This requires attention to several other factors
which must be entered into the information system’s basic design.
The portion of the grant specific information which relates to our
information system is shown in Figure 2. Other information in the
document relates to the saving of copies of public announcemen-
ts, hence is of little interest to us. What data we do not include in
the primary data table will serve to define additional data tables.

The client also has access to data from a variety of test in-

The Computer Journal / {ssue #37

Figure 2: Grant Specific Information.

Carl D. Perkins Vocational Education Act
Record Keeping

On-Line Information Required:
1. Minority Status

Actual status such as Caucasian, NAI, etc.
Yes or No (Minority)

2. Current Grade Level
If student, then in what grade
If not a student, then what level is highest achieved

3. Gender

Specific M or F indicator is required
4. Handicapped

Yes or No with field for description

5. Disadvantaged
Yes or No with field for description (Educational Criteria)

struments which he wants included in his information system. We
will deal with test data at a later time. We have enough to deal
with, in this issue, regarding information needs which relate to
persons.

We also know that the client listing will be well over a thousand
individuals, once the system has been implemented. Other infor-
mation gleaned from the client is that he will want to do research,
is not very well versed in computer information systems, and we
must not forget that the client has little idea what he expects to ac-
complish.

Selecting the Tool

QUATTRO would be a good tool were the numbers of clients
fewer, as would REFLEX. The only problem with these two
products is that they keep their data resident in memory. Hence,
the size of each data file may not exceed the size of available
memory. No matter how we break down our sets of data, even-
tually we would have as many files of data as we would fields of
data in the files. Secondly, we have to accommodate operators of
the system who have little experience with computers, or worse,
feel they have the experience when they do not. If the operator
forgot that every change had to be saved to disk, the session’s
work would be lost. As we are dealing with people, people’s lives
and futures, we dare not place such data into the hands of
amateurs without caution & restriction.

CLARION would, at first, seem the obvious choice, save for
one factor. The client is unable to relate to us what he wants his
system to ‘‘look like,”’ what it is supposed to do for him, or what
functions of research will be desired. While many of you would
feel that, ethically, we should ask the client to ‘‘get his act
together’” and call us when he knows what he wants done, we
cannot do that. Our client’s dysfunction is not that unusual when
one is dealing with Information Engineering, as opposed to com-
mon data processing. When an application can be clearly defined,
and can be ‘‘locked’’ into its general design concept, CLARION
is a wondrous tool.

In my experience the only product that will meet the client’s
specifications, or lack of same, is PARADOX. The prime
decision-making concepts I used in this selection are the need for
research, an ‘‘open data structure’’ independent of client whims,
tangents, and adaptability for use by unskilled operators. We will
proceed from this tool selection of PARADOX.

The concepts presented may be indirectly implemented in
Rbase, and the new dBase IV. There are some significant product
differences which will have to be overcome, however. I have
many other reasons for selecting PARADOX which I would be
hard-pressed to justify, including a fondness for the product.

17

Figure 3: The personal information data table

FIELD DEFINITION WORKSHEET
Project: CES - PERSONAL DATA V I
Name Type Meaning Source M O N G
NUMBER N Client Reference Number | Locally Assigned
_— y b Aoolicats Make certain that TCJ follows you
NAME A20 | Client's Full Name Job Application to your new address. Send both old and
ACTIVE a1 | 1s Client Record Active | Locally Assigned new address along with your
expiration number that appears on
ENTRYDATE D Date Of Entry Or Change | Locally Assigned your mailing label to:
DOB D Stated Date Of Birth Job Application THE COMPUTER JOURNAL
GENDER A1 | Client's Stated Gender | Job Application 190 Sullivan Crossroad
Columbia Falls, MT 59912
ETHNICORIG A5 Stated Ethnic Origin Job Application , .
If you move and don’t notify us, TCJ
MINORITY ' Al Eligible Minority Career Counselor is not responsible for copies you miss.
Please allow six week i !
LOCATION A9 Current Client Location Available Records s notice. Thanks.
JOB A38 Current Client Job Available Records
WAITING A38 | Waiting Lists Locally Assigned

Figure 3 shows the first data table I would create for the client.
Prisons are, for all intents and purposes, small townships. Every
need and function of a small township is present. For this reason
“‘normal’’ concepts apply, though they may be abbreviated
somewhat. Let us look at the worksheet, pertaining to personal
information, in some detail.

The Client Worksheet

It makes little difference as to the type of society where we
would be able to apply this system. A client reference number
would be required. It is also good design practice to assure that
the client number is the first field in every data table. When the
numbers of clients exceeds a certain level we find ourselves
dealing with more than one ‘‘John Jones,”” and more than one
““Jane Smith.”’ In our client’s application a client number has
already been assigned by the Department Of Corrections. The
issue here is the unique identification of the individual.

The NUMBER field uniquely identifies the client from all other
clients with the same, or similar name.

There is, when using PARADOX, seldom the need to parse the
NAME field into a first and last name. PARADOX will allow any
examination of the NAME field in any way the client might
require. Additionally, a full NAME field saves a few characters of
data space, which contributes to a smaller overall file size.
Generally speaking, most applications will not require more than
12 to 20 megabytes of disk storage space when designed intelligen-
tly.

We have also added two fields for data and record
management. The first, ACTIVE, asks ‘‘is the record still ac-
tive?”’ As with any project that will do research on its data, there
must be a ‘‘data trail.”” We will want to keep test information in
the system, but not necessarily the client’s personal information.
In normal office operation we do not want to clutter the file
cabinets with ““dead files.”” This field will allow us to scan for
inactive records, and when put in a report, serve to notify the
‘“‘paper clerks’’ of which files are to be removed from the
‘‘working set.”” The second field, ENTRYDATE, serves to note
when an individual’s information, or status has changed.

18

The DOB field serves the general needs of the client’s personal
information. Note that the DOB, (date of birth) field is marked as
a “D” field, or DATE field. A date data type was used over a
string data type as later we may want to perform some ‘‘date
mathematics’’ with this field. Further, we see no real need to tran-
sfer the application to another product. If the need to export the
data should arise, PARADOX easily translates its date data types
into string data types using the RESTRUCTURE option.

The GENDER field is required, not only due to the grant
specifications of the client, but because female prisoners will also
be entered into the system. The female offenders are small in
number compared to their male counterparts. They- do not
warrant a separate information system. While they may be housed
in a separate institution, the law states that they must be dealt
with in exact equality to male offenders. For the considerations of
this data field, the location of the client is of little concern. The
concerns of this field can be managed with a simple ‘“M’’ or “F’’
entry sequence.

The information required in Figure 2 concerning
racial/minority/ethnic concepts, must cause us as Information
Engineers, to be a little creative. This field clearly states whether
the individual is a racial minority. For the purposes stated by the
client, any further ‘“‘minority”’ data would be redundant.
However, the apparent progress of our society is such that simply
being a ‘“*minority’’ is not enough to make a person receive special
consideration. In point of fact, every individual that would be en-
tered into the client’s system would legally be a minority without
regard to their race. They are convicted felons, and our society
has many programs dealing with rehabilitated felons. To serve the
client’s needs, we will provide an alphanumeric field suitable to
house a variety of ethnic descriptors. We will also provide a field
that will serve to indicate whether the client is actually eligible for
any minority programs. Eligibility determination will be the
responsibility of the client.

It is interesting to note, when dealing with the LOCATION
field, that even though a prison may occupy a remote location,
individual buildings within a ‘‘compound’’ actually have different
street addresses. This only applies, however, to buildings which

The Computer Journal / Issue #37

do not directly concern prisoners. All buildings in which prisoners
are housed have a single mailing address. In this project a conven-
tional address scheme would not work well, as all the individuals
would have the same street address. Another interesting fact of
our client’s location is that every building, while having the same
mailing address, has a unique building name. The name of the
building, then, will have to serve as the mailing address. In a more
standard application, the LOCATION field would be expanded
into three alphanumeric lines to represent the individual’s unique
" mailing address. Other than this ““hairsplitting’’ of the concept,
the LOCATION field is a reasonable one, suitable for any design.
We have made the decision to abbreviate the critical data for
reasons of disk storage space alone. Why have fields, that have no
meaning, or allow the operator to get creative with data entry?
We will deal more with the concept of creative data entry
problems, and how to solve them, later in this article.

The JOB field, in the personal information data table, relates
to the individual’s current work assignment. Every individual is
required to have a work, or school assignment. This data field
serves the “‘current vocation’’ needs of a comparable ‘‘civilian”’
system. In the client’s profession it is common to want to know if
an individual is actually employed in a trade where they are
qualified or were actually interested in their current vocation.
Research on this subject is quite interesting, but will have to wait
until a later time.

As a last minute addition, the client desired a generic field that
could be scanned to indicate individuals waiting to be tested, or
for an activity to begin, etc.

Summation of Concepts

The data in this table is directly concerned with the individual.
While other information needs of the client are RELATED to an
individual, they may not directly describe the individual as a per-
son. We will not deal with this other data in this issue.

Several fields in the PERSONAL data table do not meet the
primary design criteria of the preceding paragraph. There is a
reason for their inclusion, however. All projects have their
“nuisance’’ segments. The PERSONAL data table serves to deal
with, and get out of our way, one of the client’s nuisance ap-

. plications.

Once the PERSONAL data table is built, it will be updated by a
daily “Change Sheet,”” which notifies all departments in the
prison of changes in an individual’s status. Individuals may
change housing units and work assignments often. Better put,
when dealing with large numbers of people there are always
changes being made. For obvious reasons, a prison environment
tends to be quite fanatical about knowing where a prisoner is at
any moment of the day.

For Practice

We will continue, briefly, discussing the PERSONAL data
table’s design and construction. Our discussions are not,
however, theoretical in nature. The information system being
presented is real. Because it is real, and not theoretical, we cannot
“dummy”’ up data used in the research sections of the series.
Remember the minor deity GIGO, ‘‘Garbage In, Garbage Out.”’
It would be of little benefit to anyone, if the data were not real.
We are required to keep the identity of individuals represented in
this system confidential. The PERSONAL data table is the “‘key”’
table to an individual’s identity. All other tables will have data
records referred to only by the individual’s ‘‘Client Reference
Number.” For these reasons of confidentiality, the PERSONAL
data table, while made apart of the application disks available
with this series, will not contain “live data.”” Qualified
professionals in need of data not immediately available through
this series may present a statement of need, in care of TCJ. Be
sure to include your business telephone number, and where you
can otherwise be reached during normal working hours.

The Computer Journal / Issue #37

Building the Personal Data Table Design

It must be assumed that you have some familiarity with
PARADOX, or the table based system of your choice. If this is an
incorrect assumption, then the reality of being forced to spend
some time with the manuals will have to be attended to.

Create a data table using the fields shown in Figure 3.

Prepare a data entry form using the FORMS menu option.

Exit the FORMS menu option in the normal way.

Select the PARADOX ‘*View”’ option from the PARADOX
main menu. When asked for a table name, press ENTER to be
presented with a list of available data tables, place the selector bar
on the PERSONAL data table and press ENTER. You may also
input PERSONAL, when asked for a data table, and press EN-
TER. Having entered the ‘“View’’ mode, with the PERSONAL
table, press F9 to enter the PARADOX “‘EDIT”’ mode.

Dataentry Validity Checking & Look-Up Tables in Paradox

As you may recall, part of the specification we added to this
portion of the project concerned the fact that the system had to
accommodate operators with little or no experience with com-
puters, or database managers. This lack of experience tends to
also include the desire to be creative in data entry. This is a
diplomatic way of saying that the operator may be incapable of
performing the same operation, in the same way, twice. In an at-
tempt to thwart creativity in data entry, but without massive
program code to ‘‘dummy trap’’ the entire system, simple validity
checks need to be installed.

Setting the NUMBER Field

The NUMBER field will always house a five digit number.
There are no legal exceptions in the client’s reference number, at
least in this century. Follow the following sequence.

1. Assure you are in the EDIT mode.

Press F10.

Instead of the main menu, a secondary menu will
present available options when editing a table.

2. Select “VALCHECK” from the editing menu options.

3. From the VALCHECK menu select the “DEFINE” op-
tion.
Place the cursor on the NUMBER field.

4. When the definition menu appears, select the “PIC-
TURE” option. Because we want PARADOX to accept a five
digit number, enter ##### as a picture. This “picture” is to
say that only numerical characters can be entered into this
field.

The screen will display a message that the picture you
have selected has been stored.

Repeat the sequence, steps 1 through 3. When the
definition menu appears again, select the “REQUIRED"”
option. Indicate that this field, must never be left blank.
The number field is the “thread” that will link all other data
tables together. Without a proper entry in this field there
will be no way to easily access an individual’s data.

The NAME Field

The name field will be seldom used, other than to present the
individual’s name in a report of some kind. At this juncture, no
special validity checks are required. Later we will present a
PARADOX ““script’’ to format the name field.

The ACTIVE Field

Having traveled through the VALCHECK sequence several
times now, some familiarity with the process is assumed. For the
ACTIVE field we want to assure the field is never left blank, that
the ““lowest value’’ is *‘N”’, the highest value is *Y’’, and that the
default value is set to ‘“Y’’. You may note that the ordering of the
highest and lowest values are based upon alphabetic order.

19

Entry DATE and DOB

While we would like to assure that these fields always have
data, we need not be fanatical about it. No special processing of
these fields needs to be specified, at this time.

GENDER

The GENDER field needs to be somewhat ‘‘dummy trapped,”’
so as to only allow the entry of only a single ““M”’ or *‘F”’ charac-
ter. This may be accomplished in the same fashion, in sequence
. and concept, as the ACTIVE field we did above.

ETHNICORIG, LOCATION, and JOB Look-Up Tables

The ETHNICORIG, LOCATION, and JOB fields may be
dealt with together, as their process is identical. In order to use
the TABLE LOOK-UP facilities of PARADOX, you must have
previously defined and created data tables with the desired data
“entry field options. Each of the tables used for these functions,
. (ETHNIC, LOCATION & JOB), have a single field of data
defined in them. The records in the respective tables are used to
““fill-in”’ the related look-up fields in the PERSONAL TABLE.

From the DEFINE menu use the TABLELOOKUP option for
each of the PERSONAL data table look-up entry fields. Be sure
to assign the right table to the proper entry field. From the
TABLELOOKUP option series select ‘“JUSTCURREN-
TFIELD” followed by HELPANDFILL. With these options
defined, when the fields are being edited, pressing F1 will display
the look-up tables. Placing the cursor on the desired record in the
look-up table, and pressing F2 will cause the selected record in the
look-up table to be inserted into the entry field in the PER-
SONAL data table.

To test the look-up functions, assure that you are in the edit
mode, whether using a data entry form or table view, and press
F1. The look-up table should appear.

MINORITY Field

The minority field requires only a *“Y”’ or ‘‘N’’ entry character.
It may be left blank, but we should install a default entry of ““N”’
just to ease the data entry process.

WAITING Field

The waiting field is a *‘junk’’ field. The client has great expec-
tations of use for this field, but the actual use of it depends upon
" the operator scanning it regularly. Unless the client makes visible
use of it, it will be deleted at a later date. We often must sate
unrealistic whims of clients new to Information Engineering,

(sigh).

Cleaning up Other Concepts For this Session

We have not gotten into the ‘‘mechanics’ of the operation to a
point that may totally satisfy you in this issue. There has been a
great deal of critical, but fundamental, foundation information
that had to be dealt with. Throwing all the basic ideas at you in a
first installment of the series gets them out of the way. We will not
want to deal with them in later issues. In future installments we
will want to deal only with the tasks at hand, assuming the basics
are understood.

The client will require a number of reports for this data table
alone. PARADOX allows up to 15 individual reports per data
table. This was another reason for selecting PARADOX for the
client’s project. We will not deal with the building of reports in
this issue, if at all. The methods of report development vary
greatly between products, making the topic unsuitable for a
presentation of general information. If you have a particular
question dealing with PARADOX reports, however, drop me a
line in care of TCJ and we’ll see what we can do to help.

In the next installment of this series we will create a job ap-
plication table, and a table for storing SAT (Stanford
Achievement Test Scores). The job application data will be
developed for later use. The SAT data table will introduce basic
research techniques, basic statistical analysis of data, selectivity
functions, and demonstrate a simple method of producing ‘‘bar

20

graphs,”” without the use of graphics or complex programming.

It is hoped that this first installment will get you thinking, and
provide you with basic information. Once again, the information
presented here is not intended to be a complete tutorial. Further,
it will not be repeated in future issues, but built upon with new
congepts.

Short Takes

Art is probably the most tactful editor in the world! His way of
mentioning that I am a week past deadline is to send me time
management software to ‘‘look at,”” and closing the cover letter
with our complete production schedule. Well, there went my
Christmas downtime! Oh well! If I were efficient no one could
stand me!

I am sure most of you have seen the little inserts from POWER
UP! which have been included in many of the shrink-wrapped
trade magazines. I have never paid a great deal of attention to
their products, other than to note that they were “‘cute.”’” Well, 1
blew it again! Art sent ‘‘down’’ three selections from their
product line for evaluation. While I don’t have the space this time
to go into detail, there are three products I consider worth your
investigation, and investment.

Calendar Creator Plus

From the advertisements CALENDAR CREATOR PLUS
looked like just another calendar generation program. It is more
sophisticated than I had thought. Oh, it does six or seven dif-
ferent styles of calendars. It also allows you to create your own
““overlays’’ for standard calendars. What they call ‘‘overlays’’
resemble the little holiday notes on commercial calendars. If your
work area looks like mine, the calendar is covered with notes, ap-
pointments, and even deadlines I keep missing. This calendar
program allows you to do everything you would normally do with
a pen while talking on the phone, but with a touch of
professionalism. Not only can you create functional things to put
on the wall, but you can personalize them for your boss. This
product has a very high REVENGE factor!

Quick Schedule

On those rare occasions when my boss has an attack of ef-
ficiency, and demands ‘‘project management software,”’ I nor-
mally point to the REFLEX and REFLEX WORKSHOP
manuals. REFLEX does the job well, but takes a little time to set
up. QUICK SCHEDULE has the ability to do a readable ‘‘time
chart’’ which, on first impression, seems to be quite usable. I can
think of one application for which QUICK SCHEDULE is very
well suited: Class Scheduling. I get real tired of plotting a class
starting date and trying to visualize the twelve week’s demands
upon resources.

Grid Designer

A GRID DESIGNER? Designer? Design what? The darn thing
comes with 233 examples on tap. Grids? Yes, it produces grids as
well. It has calendars, appointment schedules, score card forms,
rules, and more that I haven’t had a chance to look at. The first
thing that I recalled when looking at the product’s ‘‘sample’’
menu was the time my boss was wondering what had happened to
the accounting ledger forms that ‘‘were here somewhere!’’ Rather
than explain that we threw them away last June, with GRID
DESIGNER one needs only ask what style of accounting form he
was referring to, printing a supply when he leaves the office for a
moment. This product has screen design forms, FORTRAN
coding forms, and just all kinds of stuff, and they all can be per-
sonalized. Of course one can also design a “‘grid’’ or two of their
own, should one of the ‘“‘samples’’ not suffice.

These POWER UP! programs are the stationary catalogs of the
information age. They are very functional, and an asset to any of-
fice environment. They are highly recommended. To request a
catalog, or place an order call 1-800-851-2917 or 1-800-223-1479
in California.

I can see the need to include many of these POWER UP!
products in my Information Engineering toolbox. To keep infor-
mation moving takes organization. These products are clever
enough to get people to notice a project schedule. Getting them to
follow it though, is another story. 1

The Computer Journal/ Issue #37

Using ZCPR3’s Named Shell Variables

Storing Date Variables
by Rick Charnes

I have really been enjoying myself lately with my Morrow run-
. ning Z-System. I am slowly but surely developing a sense of
myself as what Frank Gaude’ used to call a ‘‘chipper’’ (one rung
below a ‘‘hacker”’), and I guess I’d consider myself a proto-
programmer in my own right. In any case I am finding a great
deal of delight in doing what I’m doing with ZCPR3. What I am
producing is providing me with an wonderful feeling of creativity
and productivity. I would like here to express my deep gratitude
for all the people on the Z-Nodes in the last two years who have
been such a strong part of my life and education. Their gentle and
wise assistance has been a source of great joy, and I'd like to say
how grateful I feel for their help during this exciting period of my
life. I can only hope that what I have been sending out over the
wires of the Z-Node network can in some small part discharge
that debt and stand as testimony to their own good deeds.

It’s interesting—I still don’t know a ‘‘language,’’ in the sense
of assembler or Pascal or BASIC, except for the very rudiments;
yet ZCPR3 itself provides such a system of tools that as a whole it
comprises virtually a language in itself. It is in this programming
‘“language’’ that I mostly write—and have the most grand time!

As far as tools I use, first and foremost of these I must say right
off the top and without any hesitation whatsoever as regard its
pre-eminent status among ZCPR3 tools offering a virtual
‘‘language,’’ is ARUNZ. This magnificent program of Jay Sage’s
has given me untold hours of programming delight. Its
sophistication, intricacy, power and sheer elegance are un-
paralleled in the Z world. It acts as a basis and foundation for vir-
tually everything I do. I will not in this column describe its use, as
Jay has done so in previous columns; suffice it to say that my
ALIAS.CMD file, developed over a period of two years, is now
32k in length and next to my album of family photos would
probably be the first inanimate object I would rescue from my
house in case of fire.

1 fervently hope by now you are all using either ZSDOS or
DateStamper. I cannot emphasize enough how much datestam-
ping has added to my computing. There are three datestamping-
supporting utilities that have played a particularly important part
in my computer use in recent months and have provided a foun-
dation for me to branch off into all sorts of creative projects.
They are: Ron Fowler’s classic MEXPLUS; Carson Wilson’s
superbly useful ZSDOS directory program FILEDATE which
allows you to sort by date, either most recent to earliest or vice
versa; and—of course—ARUNZ. It is ARUNZ’ date parameters
that have allowed me to complete my latest and extremely
fulfilling project, about which I now write.

I have a ZEX script that I use for backing up my hard disk. It’s
a good friend that I’ve been maintaining and lovingly looking af-
ter for the last year or so. A few days ago, while making some
enhancements to it that I have found very exciting and to which I
would like to devote my next column, an idea hit me. Whether the
sun suddenly came out in heaven, the moon entered Aquarius, or
the gods were just in a good mood I can’t really know for sure,
but I do know that the end result of that light bulb going off in my

The Computer Journal / Issue #37

head has given me a very great deal of delight and I'd like to share
it.

One nice thing about using a ZEX script as opposed to a prefab
COM file for something like this is that you have complete con-
trol over it. The programming ability notwithstanding, you are
free to implement any ideas that come to you. I’ve taken special
care to put fancy graphic displays into the ZEX file, something
that ZCPR3 programs are often sadly lacking. My idea: I won-
dered if 1 could write something that, before doing the actual
back-up, would display to me the last date and time any given
directory was backed up.

I thought to myself: what an idea! It would be quite amazing to
pull something like this off. But—how could it possibly keep
track of this information? Where would it be stored? Assuming I
could store the information someplace, how could it survive a
cold boot, not to mention a power-off? When the idea first came
to me I had no idea how I could possibly do it—it seemed like
something only an extremely sophisticated computer system could
do. Yet I had a feeling somewhere deep inside that I could do
it. ..

By the way, for those who don’t get as excited as I about hard
disk backups and knowing when the last one was performed, I
will mention that I have used the same technique to create a
STARTUP alias that displays to me on my screen, in beautiful
graphics and reverse video, the last date and time I turned my
computer on (or did a cold boot). Furthermore, using the same
tools and concepts, I have created an alias that will tell you the
named day of week of any date in 1989. If you want to know what
day of the week your birthday falls on, this alias will do it. So
everything you read here is applicable to these tasks as well.

I should add, by the way, that the first two of these applications
display not only the time and date, not only the name of the day
of the week (‘“Wednesday,”’ etc.), but also the full name
(“‘August’’) of the month. This all done without an external
“‘program’’ written in any of the standard computer
‘‘languages,”’ but rather entirely with the basic ZCPR3 utility
toolset. I think it’s pretty incredible.

One of the things I have always found eminently enjoyable
about Z-System is the harmonious way the individual tools work
together and their ability to pass messages and information to
each other (it’s always reminded me of Olympic relay runners
passing the torch to each other...), and when I began thinking
about how to accomplish this task I knew it was on this feature
that any scheme would depend.

Oddly enough when I think about it now, I was first planning
to store bytes of date information in the ZCPR3 registers. It’s
hard for me to imagine how I could have forgotten that the
registers are zeroed out when the computer is turned off!

It didn’t take me long to sketch out in my mind the broad con-
ceptualization of how I was going to do it, though the actual
details took much longer to think through. Those who have
digested and assimilated my last article should be thinking already
how it could be done. We of course do it with string (shell)
variables. Indeed, that is the only way I imagine it would be

21

possible. I’'m going to assume here a minimum level of knowledge
of the ZCPR3 shell variable system and the relevant tools for
manipulating them as discussed in last month’s column.
Throughout this column I use the phrases ‘‘shell variable,”
‘“‘named variable,”’ and *‘string variable”’ interchangeably.

The basic concept is to store and then access the dates as named
variables inside SH.VAR. Each variable will store the date of last
backup of each hard disk directory, one variable to one directory.
Since there is no limit to the number of entries inside a VAR file
this is no problem; we can easily fit 40 or 50 entries inside a small,
2k (on a floppy) or 4k (on a hard disk) VAR file. The backup
procedure will first read and display this definition, then over-
write it with the current date and time, and finally do the actual
backup.

I decided to give each string variable name a prefix of
" “BUDAT?”, standing for ‘“BackUp DATe.”’ In other words, the
string holding the date information about hard disk directory
Al5: would be named ‘““BUDATIS,” and that holding infor-
mation about my B3: directory would be named ‘“BUDATB3”’.
My idea was that ultimately I would have the contents of
SH.VAR looking like:

VARIABLE DEFINITION

NAME

budatal Sunday, January 27, 1989 3:43 pm

budatalb Sunday, January 27, 1989 4:20 pm

budatb3 Thursday, March 9, 1989 9:17 pm
Tuesday, March 14, 1989 7:22 pm

bjdatbé

etc. This is perfectly reasonable. There is nothing about the ZC-
PR3 shell variable system or the *. VAR file structure that would
prohibit such string definitions; strings can be of any (reasonable)
length, can contain spaces, numbers and punctuation, etc. The
task at hand was: how to do it? What mad and crazy
agglomeration of tools, ARUNZ aliases, and/or ZEX files could
actually write, update and maintain such information into our
. humble SH.VAR file? Ah, life’s challenges are so sweet. . .

I should say the most difficult, or at least laborious part of the
entire procedure was working out a scheme for getting and
displaying the name of the day of the week. I originally spent
several hours on the project doing it without this information,
and ultimately created the display:

LAST TIME THIS A15: DIRECTORY BACKED UP:
DECEMBER 15, 1987 11:03 p.m.

I found myself, however, quite frustrated not knowing what
day of the week that was. All those numbers without a ““Mon-
day”’ or a ““Thursday’’ in there just didn’t feel right; something
was missing. I went back to my hilltop and meditated some more.
After several days without food or drink, I can now present to the
world the entire procedure I developed.

It consists of an ARUNZ alias followed by my above-
mentioned BACKUP.ZEX script. Though I don’t have room in
this column to detail the quite lengthy ZEX script and will do so
next time, only the first two lines are relevant to our task at hand.
If you have any series of commands you use, or could use, to per-
form your backing up procedures you could simply insert them in
a ZEX file after what I give here as the first two lines of my
BACKUP.ZEX. If you do not need a hard-disk backup
procedure on your system, I hope you can study this universal
technique of storing and accessing dates and find another use for
it such as displaying the last time your computer was powered on,
as was mentioned above.

Without further ado, here’s the alias and ZEX script.

BACKUP resolve lastback $hb %budatdhb
shfile dmdy

22

resolve zex backup budat$hb %$dd %month $dd,
19%dy $dc:$dn $da

The first two lines of BACKUP.ZEX are:

shfile sh
shvar $1 $2 $3 $4 $5 $6 37

I’ll explain the first line of the alias later, even though this does
the “‘read’’ of the date and the rest of the procedure does the
“‘write.”’” Although when the alias runs the read happens first, the
whole procedure will be much easier to understand if we go
through the write first.

RESOLVE, SHFILE and SHVAR are all non-commercial ZC-
PR3 utilities, available on Z-Nodes everywhere.

Ok, That’s what our command scripts look like. Now, to the
explication.

First 1 used SHDEFINE to create 12 different *.VAR files,
named 0189.VAR, 0289.VAR, 0389.VAR, 0489.VAR, and so on
up to 1289.VAR, one to represent each month of 1989, where
0189 = January 1989, 0289 = February 1989, etc. On a floppy
that’s only 24K and on a hard disk I'm sure you can find 48k to
clear out somewhere. I scarcely notice it now. The purpose of
these files is to store information relating day of week with any
given date of month. I did this by defining in each file string
variables named ‘01, ‘02,” ‘03,” and so on, up to ‘30’ (or ‘28’ or
‘31°, depending on how many days in that month).

Then, with a calendar in front of me, I defined each string
variable (again, approximately 30 in each) in each of the 12 VAR
files to be the name of its corresponding day of week. For instan-
ce, January 1, 1989 is a Monday. | entered ‘“‘SHDEFINE 0189’
on the command line to create 0189. VAR, got into its Edit mode,
and defined a variable ‘‘01”’ to be the string of characters
“MONDAY”’. Then the variable string ‘“02’’ was assigned the
definition ‘“TUESDAY”’, and so on up to ‘31"’ which was
defined as ““SUNDAY’, since January 31 is a Sunday.

Now I was almost ready to save 0189.VAR but before 1 did
there was one last definition to give it. We want ultimately to be
able to use this VAR file to return to us the name of the month. I
did this by simply adding one more variable, calling it *“MON-
TH?”. Still in SHDEFINE 1 added a string variable “MONTH”’
and here defined it to be the string “JANUARY”’. I then saved
and exited, thus creating 0189.VAR on disk with my definitions. 1
then opened up 0289.VAR with the command ‘SHDEFINE 0289’
and did the same thing for all the days of February. I repeated this
process for each of the remaining months of 1989, still with my
calendar in front of me to confirm everything, defining 30 or 31
string variables in each file to be their respective days of the week,
and one additional string named ‘“‘MONTH"’ in each VAR file to
its respective name of month.

It took a half-hour or so, but twelve *.VAR files were now
ready to serve me powerfully in many different capacities, for
many different purposes.

Now I was faced with the rather interesting challenge of how to
get ZCPR3 to know which VAR file to access. Let’s assume today
is March 11, 1989. How can we possibly get the system to define
0389.VAR as the current shell variable file? Interesting problem,
eh?

OK, watch this:

SHFILE dmdy

is our line in ALIAS.CMD that does it. Remember SHFILE from
last column? Whatever is given as its parameter becomes the
current VAR file. Since we are running ZSDOS/DateStamper,
ARUNZ’s wonderful date parameters will translate the above line
into “‘SHFILE 0389’ and 0389.VAR then becomes our current
VAR file.

This is our wonderful ‘‘number-as-a-string’’ technique which I
will go into greater detail next column and which comes in very
handy in all sorts of situations. There is no reason we cannot use
digits in a filename (‘‘0389.VAR”’), and here we can see it has ser-

The Computer Journal / Issue #37

ved us well. When Jay added date parameters to the ARUNZ
parameter set, I’'ll bet he didn’t expect they would ever be used as
filenames! But this typifies ZCPR3—there is no end to the inven-
tiveness and creativity it inspires and facilitates.

OK, now we have 0389.VAR as our current file. Now it’s time
to really get our fingernails dirty, and what better tools for that
than a dynamic duo of Dreas Nielsen’s superb RESOLVE in con-
cert with Rick Conn’s classic SHVAR? Our next, perhaps
somewhat cryptic-looking, but powerful, line is:

resolve zex backup budat$hb %$dd Fmonth $dd, 19$dy $dc:$dn $da

How’s that for a mouthful? Let’s get out our fine-tooth comb (or
should we use a microscope?)
First, let’s see what our line will look like when ARUNZ ex-
pands its parameters—the various $d date symbols and ““$hb”’ for
.“home directory’’—since that’s what will happen first, even
before RESOLVE gets a shot at it. Still assuming our date of
* March 11, 1989, and let’s say it’s now 8:15 p.m., we will then get:

resolve zex backup budatal5 %1l %month 11, 1989 08:15 pm

Remember, that since we are on the AlS: directory, ARUNZ
will expand the ¢‘$hb’> parameter to ‘‘alS.”’ ‘‘Budat$hb”’
therefore becomes here ‘‘budati5.”

Now that ARUNZ has done its job let’s see what RESOLVE
needs to do. This is in many respects the most interesting part of
the whole process, and the magic key to coaxing the shell variable
subsystem into doing our work for us. It is what provides the
correct parameters to the line in the ZEX script that does the ac-
tual writing to the VAR file. Remember that one of the things
RESOLVE does is scan its command line for strings beginning
with *“%’’. When it finds any such strings it will dip into the
currently defined VAR file and see if there are any variables con-
tained within by that name. If there are, it will expand, or
‘“‘resolve’’ the string to its definition. So let’s see what happens
here.

RESOLVE sees two elements on its command line, *“%11”’ and
“%MONTH,”’ and recognizes them as strings with which it needs
to concern itself. Remember that SHFILE has previously defined
0389.VAR as the current VAR file. RESOLVE then opens up
0389.VAR, takes a peek inside and looks to see for something
- named ‘“11”’ and something named ‘“MONTH.”’ Well, what do
you know—there they are. Remember when we were creating our
12 *. VAR files we had defined the various dates of month to be
their respective names of day? Now we see the fruits of our
labors. RESOLVE sees that the string variable named ‘11’ has
been defined as the string “SATURDAY.”” OK, good—that’s
one. Now it looks for a variable named ‘MONTH?’ ... and finds
it! Inside 0389.VAR it’s (appropriately) defined to be ‘“MAR-
CH.”’ Wonderful!

So let’s see what wonders RESOLVE hath wrought. It’s now
finished its work and produced the following command line, all
ready to send over to our ZEX script:

ZEX BACKUP BUDAT15 SATURDAY MARCH 11, 1989 08:15 P.M.

Beginning to look like something we can use? Good; it should.
The rest is easy. This command line is passed to ZEX which loads
up BACKUP.ZEX, and we send the script a command line of
seven (7!) parameters! The main part of BACKUP.ZEX, the part
that does the actual backing-up, will be described in my column
next issue. For now we’re only considering the first two lines,
those that are relevant to and finish off our task here.

Here’s the first two lines of BACKUP.ZEX and the crowning
glory of our project, the part that writes the date to SH.VAR.

SHFILE SH
SHVAR $1 $2 $3 $4 $5 $6 $7
The first thing we need to do is reset the active VAR file to
SH.VAR, and SHFILE does that perfectly. The storing of the

date must always be done to this file, our general-purpose and
default file, since all the reading is—and must be!—done from it

The Computer Journal/ Issue #37

and not any other.

If after reading my last column you have a good gut feeling of
how SHVAR works, you may be getting an outline of how we’re
going to do this. Remember that the purpose of SHVAR is to
write (or overwrite) shell variables inside the currently defined
VAR file. It takes its command line in two parts. The very first
parameter becomes the name of the variable with which we wish
to work, while the entire remaining command line becomes that
variable’s definition. So quite properly “BUDAT15’—*‘BackUp
DATe for the directory A15:” will be the the variable name which
inside SH.VAR we would like to define. The particular definition
we would here like to give it is the character string consisting of
the current date and time.

It works perfectly. Our command line, the one that finally does
the actual writing, complete with parameters ultimately sent to us
from ARUNZ, is:

SHVAR BUDAT15 SATURDAY MARCH 11, 1989 08:15 P.M.
SHVAR opens up the currently defined VAR file, which is now

SH.VAR and no longer 0389.VAR, and looks to see if there is a

variable by the name of ““BUDATI15”’. If there isn’t it will create
it; if there is it will overwrite it. In either case, we will then have a
variable named BUDATI!5 with a definition of the following
string of characters:

SATURDAY MARCH 11, 1989 08:15 P.M.

Simple, but amazing.

We’ve made a long journey from ARUNZ’s date parameters to
a string variable definition, taking one thing and transforming it
into another. I’ve always thought ZCPR3 was the most ‘‘Bud-
dhist”’ of operating systems. Here we got a chance to see the
beauty of ZCPR3 and the power of its ‘‘tool concept’’ in action.

Now that we’ve stored the date let’s finish our task and see how
we read it, which is actually the first part of the procedure. We
need a utility that will accept parameters and display something
on the screen, preferably in a flashy and attractive manner, such
as:

THE LAST TIME DIRECTORY XXX WAS BACKED UP WAS:
XXXXXDAY, MONTH DD, 19YY HH:MM X.M.

If you’ll recall, the first line of our BACKUP alias is:
BACKUP resolve lastback $hb %budat$hb

Terry Hazen’s wonderful PRNTXT15.COM, available on all
Z-Nodes inside PRNTXTI15.LBR, does what we want perfectly.
It makes a COM file out of text, and can display its command line
parameters. I often use it for status reporting or ‘‘message’’
screens. Its symbol ‘$1° represents ‘‘the first parameter,’’ and its
‘$-1 symbol, modeled after ARUNZ, expands to display *‘the en-
tire command line after the first parameter.’’ This is just what we
need. We create a message screen as above and call it LAST-
BACK.COM. We set it up as follows:

THE LAST TIME DIRECTORY $1 WAS BACKED UP WAS:

$-1
and it will do exactly what we want when fed the correct
parameters.

If you don’t want to be fancy and use PRNTXT1S5, simply use
ECHO and make two aliases out of it (you will definitely overflow
the command buffer otherwise):

BACKUP resolve echo last time directory $hb
was backed up was: %budat$hb;backup2
BACKUP2 shfile dmdy

resolve zex backup budat$hb %$dd %month $dd,
193dy $dc:$dn $da

23

After we have created LASTBACK.COM as above if we are
using it, let’s now execute our alias. ARUNZ first expands its
parameters and produces the command line:

RESOLVE LASTBACK A15: %BUDATA15

We can see what will happen now. Since this is the first part of
our procedure and we haven’t yet invoked SHFILE to change the
default VAR file, SH.VAR is currently active. RESOLVE then
looks inside SH.VAR for a string variable named BUDATIS. Lo
" and behold—there it is, just as we wrote it the last time we ran the
backup procedure. It sees the definition, which of course is the
character string consisting of the last date and time we ran the
backup, as we did above. We then have the command line:

LASTBACK A15: SATURDAY MARCH 11, 1989 08:15 P.M.

"and if you’ve set it up as I have, LASTBACK.COM displays on
. the screen, inside a beautiful reverse video box:

LAST TIME THIS DIRECTORY WAS BACKED UP:
SATURDAY, MARCH 11, 1989 08:15 P.M.

Wow!

Each time the backup procedure is run on the AlS: directory it
will overwrite with the new date and time whatever had been the
current definition of BUDATI1S. The beauty of this is that we can
do the same for all our hard disk directories, with a different
string variable (BUDATAO, BUDATB3, BUDATDS, etc.)
assigned the job of keeping track of the date of last backup for
each directory. Just run the script on each of your directories and
it will automatically create, and ultimately maintain, an ap-
propriately named variable inside SH.VAR, with this variable
assigned a definition of the character string consisting of the date
and time of last backup. All these string variables are kept inside a
single SH. VAR file.

After the date displays, then the remaining part of
BACKUP.ZEX runs, which I will describe next issue.

When I got this worked out I stood up and cheered for ZCPR3.
I’'m proud to be using such an elegant operating system. I hope it
inspires similar feelings in you.

Now let’s quickly see how we can use the same technique to get
- our computers to display the date and time of last power-on (or
cold boot). Here’s the relevant segment of my STARTUP alias,
which chains to START?2.

STARTUP resolve laston %¥laston
shfile dmdy)
resolve STARTUP2 %$dd %month $dd, 19%3dy $dc:$dn $da
STARTUP2 shfile sh
shvar laston $1 $2 $3 $4 35 $6

It’s basically the same procedure, though this time using two
aliases rather than an alias and a ZEX file. (There’s no reason the
backup technique above couldn’t be done with all aliases if you
don’t have a ZEX script; simply follow the syntax used here.)
LASTON.COM is PRNTXT15.COM again, this time configured
as:

LAST COLD BOOT OR POWER-ON:
$

The ‘$’ symbol returns the entire command line.

Again, ‘SHFILE dmdy’ sets the current VAR file ap-
propriately for the current month. RESOLVE expands the crucial
string variables, ‘%3$DD’ and ‘“MONTH,’ and feeds the entire
“resolved’’ command line to STARTUP2. This second alias then,
as above, resets the VAR file to SH.VAR and finally feeds the
correct parameters, being the current date and time, to SHVAR
to do the actual write/store.

24

Note that here we are using two aliases, just as for the backup
procedure we used an alias and a ZEX file. Though it doesn’t
matter whether one uses two aliases or an alias and a ZEX file, it
is vital that the process be split somehow into two parts. The
reason for this is that when we do the actual write to file with
SHVAR we must write to the specific file named SH.VAR. The
parameters we feed to it, however, depend on the expansion of
string variables inside 0389.VAR!! SHVAR (unlike SHDEFINE,
by the way) can only write to the currently defined VAR file. This
two-alias, or alias-and-a-ZEX-script solution, in which the second
component resets the VAR file to SH, is our perfectly acceptable
workaround.

I have had this procedure as a permanent part of my STAR-
TUP alias for months now. It is an absolute joy and delight to see
my dinosaur 1984 CP/M Morrow computer do something as
sophisticated and elegant as remembering, storing and displaying
to me the time and date of last power-on each time I activate that
magic red switch. We ZCPR3 users really do have an awfully lot
to be grateful for.

And now for the last interesting alias that uses the 12 *. VAR
files we’ve created. Do you want to know on what day your son’s
birthday, or your anniversary, or Memorial Day, falls in 1989—
without consulting a calendar? I call this alias DAYOFWEEK.
What? You didn’t know an ARUNZ alias name could consist of
more than 8 letters? Shame on you. An alias can be up to 12
possible letters. ARUNZ is not called an EXTENDED command
processor for nothing. . ‘DAYOFWEEK if nu $1

shfile dmdy

resolve echo today is %$dd

else

if ex a15:$1%$3.var

shfile $1$3

resolve echo %month $2, 1933 is a %3%2
else

echo that is beyond my ability

zif

Entered with no parameters it will return with today’s day of
week. With parameters exactly in the format of

DAYOFWEEK MM DD YY

it will give you the day of week of the specified date, as long as
there is an appropriate VAR file. If there is no VAR file, as would
happen if you entered:

DAYOFWEEK 06 11 90

the alias would humbly inform you of its ignorance. If you shor-
ten your command names (I have ELSE permanently renamed as
L, ECHO as E, RESOLVE as RS, etc.) you can easily fit in a syn-
tax statement here as well, such as

IF EQ $1 //;ECHO SYNTAX = ''$0 MM DD YY'!

What I hope 1 have conveyed with this column is not the
mechanics of any particular application but rather the general
principles of using the ZCPR3 shell variables to store and later
retrieve information. Although I think my use of them here in
combination with ZSDOS/DateStamper to store date infor-
mation for later access is especially enjoyable and intriguing, and
is ideally suited to the shell variable feature, the same principles
are available for working with many different and varied types of
information.

Have lots of fun with these techniques. Please feel free to write.
Z you next time... B

The Computer Journal / issue #37

Resident Programs
TSR’s and How They Work
by Dr. Edwin Thall

Dr. Edwin Thall, Professor of Chemistry at The Wayne
General and Technical College of The University of Akron,
teaches chemistry and computer programming.

A new approach to writing programs was ushered in when IBM
and Microsoft introduced the terminate-but-stay-resident (TSR)
function call with the DOS 1.1 version. Software developers
quickly caught on and now just about every conceivable utility
has been made into a resident program. A preassigned ‘‘hot’’ key
allows you to pop up such applications as calculators, calendars,
address books, and notepads. As the name suggests, resident
programs remain in computer memory while other programs
execute. But resident programs are also potential disasters since,
without warning, they can lose data, scramble the screen, or crash
the system.

The TSR was conceived mainly to facilitate device drivers and
peripherals. Unfortunately, DOS does not provide the controls
needed to maintain peaceful coexistence between two or more
resident programs. Users seem to be divided into two camps:
those who swear by TSRs and those who swear at TSRs. The in-
tention of this article is not to defend nor attack the widespread
. use of TSRs, but rather to thoroughly explain how they work.
Two examples, one well-behaved and the other, a ‘‘bully,”” will be
presented. Removing a resident program without rebooting the
system will also be explored.

Resident Versus Transient Memory

COMMAND.COM is divided into three components: the
resident, initialization, and transient portions. The resident por-
tion is loaded in lower memory immediately following IB-
MDOS.COM. Interrupt vectors 21-24H point to routines within
the resident portion. This portion also contains the bulk of the
error recovery messages. Once loaded, the resident portion
remains in memory until the system is shut down.

The initialization portion of COMMAND.COM is loaded im-
mediately above the resident portion when the system is booted.
This portion initially takes control and displays the prompts for
the date and time. It also possesses the AUTOEXEC batch file, if
one is present. The first program from disk overlays this section
of memory.

The transient portion is loaded in the high end of COM-
MAND.COM. and has the capability to overlay one interim
program with another. As resident connotes permanency, tran-
sient implies temporary. The responsibilities of the transient por-
tion include displaying the DOS prompt and reading, as well as
executing, commands. The transient portion also contains the
routines to load .COM and .EXE files into the appropriate
memory location for execution.

When you request execution of a program, the transient por-
tion constructs a program segment prefix directly above the
resident portion of COMMAND.COM. It then loads the

The Computer Journal / Issue #37

executable program immediately following the program segment
prefix, sets the exit addresses, and transfers control to your
program. When execution is complete, COMMAND.COM
regains control and assigns the same memory locations to your
next application. However, if you terminate with one of the ter-
minate-but-stay-resident functions, the program becomes an ex-
tension of the resident portion of COMMAND.COM. The area
of memory occupied by the program is reserved in the same man-
ner as memory is reserved for DOS. Future applications will not
overwrite this section. The only way to eliminate such a program,
without the benefit of a resident memory manager utility, is to
reboot DOS.

Establishing Residency

We are ready to install a simple program directly above the
resident portion of COMMAND.COM. After installation, the
DEBUG utility will be used to locate and examine the program.
Let’s begin by calling Interrupt 27H to incorporate the message
“STAY RESIDENT?”’ in the resident portion of memory.

Interrupt 27H terminates the currently executing program and
reserves part or all of its memory so that it will not be overlaid by
the next transient program. The maximum quantity of memory
that can be reserved by this interrupt is 64K bytes. From DOS,
load DEBUG and enter the following program (omit comments):

A>DEBUG

-A100

DS:0100 JMP 0110 ;BY~PASS DATA
DS:0102 DB 'STAY RESIDENT ' ;DATA

DS:0110 MOV DX,0110 ;PROTECT UP TO HERE
DS:0113 INT 27 ;TSR

DS:0115 <ENTER>

The program’s code is 21 bytes (offsets 0100-0114H) and can be
viewed by typing:

-D100,114
D5:0100 EB OE 53 54 41 59 20 52-45 53 49 44 45 4E 54 20
DS:0110 BA 10 01 CD 27

Later, we will search resident memory to locate this code.
Preceding the code is the 256-byte program segment prefix (PSP).
The PSP occupies offsets 00-FFH and is made resident along with
the code. You can display the PSP with:

-DO, FF

Here’s how the program works. The first instruction (JMP
0100) by-passes the data (DB statement). The next instruction
(MOV DX,0110) specifies the program be protected up to, but
not including, offset 0110H. When the program terminates with
the last instruction (INT 27H), the PSP (offsets 0000-00FFH) and
code (offsets 0100-010FH) are made an extension of the resident
portion of COMMAND.COM. Save the program as
RES27H.COM:

25

-NRES27H.COM
-RCX

CcX 7?27
:0015

-RBX

BX 27?7

: 0000

~W

Since Interrupt 27H cannot be invoked from DEBUG, return to
"DOS and execute the program:

-Q

A>RES27H

Reload DEBUG and use the “‘S’’ command to search the first 64K
bytes of memory for the program’s code. When searching the
initial 64K bytes of computer memory, you must set the data
segment (DS) to zero.

A>DEBUG

-RDS

DS ?7??

:0000

-S 0 L FFFF EB OE 53 54 41 59 20 52
0000:61E0

0000:8F6F

Ignore the last address retrieved by the search command. If you
are using DOS 2.10, the program’s code begins at 0:61EOH with
the PSP 100H bytes below at 0:60EOH. To display the PSP and
code, enter:

-D0:60EQ, 61EF

How is DOS able to keep track of resident memory allocations?
The paragraph directly below the PSP (0:60DOH) is a memory
control block. Paragraphs originate at an offset ending in zero
and are 16 bytes in length. Let’s explore the first five locations of
this block:

-D60D0, 60D4
0000:60D0 4D OE 06 11 00

The first location of a memory control block, called the iden-
tifier byte, contains either 4DH or SAH. The value 4DH indicates
that the memory directly above belongs to a program or DOS,
while SAH verifies that no more memory control blocks succeed
this one. The value SAH also instructs DOS to install the next
TSR here. Bytes 2 and 3 of the memory control block hold the
PSP segment (060EH) of the program to follow. If the PSP
segment number is zero, then the memory defined by the memory
control block is free. Bytes 4 and 5 specify the size (in paragraphs)
of the pending memory block. Notice the value is 0011H or 17
paragraphs. Memory control blocks chain from one to the next,
and DOS is notified that the next memory control block is 17 plus
one or 18 paragraphs above. Between these memory control
blocks are the PSP (16 paragraphs) and the program’s code (1
paragraph). The last 11 bytes in a memory control block are not
used by current DOS versions and may contain remnants from
other programs.

To predict the location of the next resident program, search
above the PSP for the memory control block beginning with
5AH. The first occurrence here is at 0:6220H. Look at the initial
five bytes of this paragraph:

-D6220,6224
0000:6220 5A 23 06 DD 79

The information tells us to expect the PSP of the next resident
program to be loaded at segment 0623H (address 0000:6230H).
Let’s install the same program a second time in resident
memory but this time by invoking the other TSR function. DOS
function 31H was introduced with the 2.00 version. This function

26

is preferred by IBM because it passes a return code and allows
more than 64K bytes to remain resident. When using DOS fun-
ction 31H, the number of bytes made resident are declared in the
DX register by paragraph. The value stored in the DX register
(0011H) specifies that 17 paragraphs are to be protected. Before
entering the program with the Debug ‘“A’’ command, secure a
new DS designation by returning to DOS and reloading DEBUG:

-Q

A>DEBUG

-A100

DS:0100 JMP 110 ;BY-PASS DATA
DS:0102 DB 'STAY RESIDENT ' ;DATA

DS:0110 MOV AH,31 ;TSR

DS:0112 MOV AL,01 ;RETURN CODE
DS:0114 MOV DX,0011 ;SAVE 17 PARAGRAPHS
DS:0117 INT 21 ;CALL DOS

DS:0119 <ENTER>

When this program terminates, 16 paragraphs of PSP and one
paragraph of code will emerge as part of resident memory. Save
the program as RES31H.COM:

-NRES31H.COM
-RCX

CX 2?72?27
10019

-RBX

BX 7277

: 0000

-W

Return to DOS and execute RES31H.COM:

-Q

A>RES31H

To determine where the second resident program has been stored,
search with the Debug ““S’’ command:

A>DEBUG

-RDS

DS 229?

:0000

-S 0 L FFFF EB OE 53 54 41 59 20 52
0000:61E0

0000:6330

0000:90BF

As we anticipated, the new resident code begins at 0:6330H
with the PSP at 0:6230H. The memory control block is located at
the paragraph preceding the PSP (0:6220H). Display the initial
five bytes of this block:

-D6220,6224
0000:6220 4D 23 06 11 00

The identifier byte (4DH) indicates that a PSP follows at segment
0623H. The length of the PSP/code are 0011H or 17 paragraphs.
Every time you execute a TSR function, the protected memory is
“‘stacked’’ directly above the previous resident program. You can
continue stacking resident programs until the available RAM is
depleted.

By now, you have probably realized how easy it is to install a
program or data in the resident portion of the computer’s
memory. The not-so-easy part involves activating it after it is
resident. This takes us to the subject of interrupt-handlers.

Interrupt Handlers

Interrupts notify the computer’s central processing unit to
suspend what it is doing and transfer to a an interrupt handler
program. The handler quickly takes the appropriate action and
then returns control to the original program that was suspended.
The 8086/8088/80286 family supports up to 256 interrupts, which

The Computer Journal/ Issue #37

are classified as internal hardware, external hardware, or software
interrupts.

Internal hardware interrupts are generated by certain events en-
countered during program operation, such as division by zero.
External hardware interrupts are triggered by peripherals such as
the keyboard. Software interrupts may be requested by any
program executing an interrupt type instruction.

The initial 1,024 bytes of computer memory are known as the
interrupt vector table. Each table entry consists of four bytes
pointing to the address of its handler. The first 128 bytes of this
table for the DOS 2.10 version is provided in Figure 1. Each four-
byte position in the table corresponds to an interrupt type (00-
FFH) and contains the segment and offset of its interrupt han-
dler. To find a particular interrupt in the table, multiply the in-
terrupt type by four. For example, INT 9H is stored in offsets 36-
" 39 (0024-0027H) and points to address FO00:E987H in ROM. Our
main programming interest in interrupt vectors is not to read
them, but to change them so they point to a new interrupt han-
dling routine.

-DB:0

0000 : 0000
0000:0010
0000: 0020

72 30 EB 00 47 01 70 00-C3 E2 00 F@ 47 01 70 00
47 91 70 Q0@ 54 FF 00 FP-23 FF 9@ FO 23 FF 00 F0
A5 FE 99 FO 87 E9 00 F@-23 FF 00 F2 23 FF 02 FO
P000:0030 23 FF 00 F@ 55 07 @0 C8-57 EF 00 F@ 47 01 70 00
0000:0040 65 FO 00 FO 4D F8 00 FO-41 F8 00 FO 51 02 00 C8
2000:0050 39 E7 00 F@ 59 F8 90 FP-2FE E8 0@ FO D2 EF 00 F@
0000:0060 00 00 00 F6 92 01 00 C8-6E FE 0@ FO 40 01 70 @0
2000:0070 49 FF 00 FO A4 FO 00 FD-22 05 00 00 00 00 00 00

The first 128 bytes of interrupt vector table

Figure 1.
(DOS 2.10 version).

Writing interrupt handlers has the reputation of being difficult
and best left to experts. Actually, the procedure is straightfor-
ward. When an interrupt is invoked, the CPU pushes the flag
register, the segment register (CS), and the instruction pointer
(IP) onto the stack and disables interrupts. It then uses the in-
terrupt number to fetch the address of the handler from the vector
table and resumes execution at that address. The handler will
enable interrupts, save registers, and then process the interrupt.

You can readily activate a resident program by modifying an
interrupt’s vector. Two interrupts especially qualified for this task
are the keyboard interrupt (INT 9H) and the user timer interrupt
(INT 1CH). Before we attempt to take control of these interrupts,
there are a few things you should know. The handler can call
DOS, and DOS will perform the function, but the handler cannot
be reentered from DOS. The last instruction of a handler must be
IRET (IP, CS, and flags registers popped). When an interrupt is
invoked, the trap flag is suspended and you cannot trace through
a handler to locate errors.

Each time a key is pressed or released, the action is reported to
the ROM-BIOS by means of INT 9H. The ROM routine reads
port 60H to find out which keystroke was selected. The scan code
and ASCII value are stored until the next key is pressed. When
you take control of INT 9H, every keystroke is routed through
the resident program and then passed along to ROM. Special
keystrokes or combinations (hot keys) are used to activate the
resident program.

Hot keys are assigned to keystroke combinations not com-
monly accessed. The special control keys are ideally suited for this
role because they do not produce characters of their own, but
change the codes generated by other keys. The shift status of the
last keystroke can be tested by means of the keyboard 1/0 in-
terrupt (INT 16H, function 02). This function returns the status
of the eight keys listed in Figure 2. For example, if both shift keys
were pressed, the AL register returns the value 3. When all eight
keys are pressed simultaneously, the value 255 is returned. A
resident program can be activated by testing for a definite value.
Otherwise, keystrokes are treated in the usual manner.

The Computer Journal / Issue #37

Bit specifies value
%] right shift 1

1 left shift 2

2 Ctrl key 4

3 Alt key 8

4 Seroll Lock 16

5 Num Lock 32

6 Caps Lock 64

7 Insert state 128
Figure 2. The eight shift status codes.

The user timer interrupt is taken 18.2 times per second and is
invoked by the timer interrupt (INT 8H). The vector for Interrupt
1CH points to address FOO0:FF49H in ROM. Use the DEBUG
“U”’ command to look at the first instruction of this handler:

-UF000: FF49,FF49
FOOO:FF49 CF IRET

This is a dummy handler which does nothing but execute an in-
terrupt return. However, control of this interrupt allows you to
continuously activate a procedure in resident memory.

Terminate-but-stay-resident programs typically include an
initialization procedure, a portion to redefine the interrupt vector
table, and a routine to remain resident. Normally, a program will
want to leave only part of itself resident, discarding the
initialization code. Therefore, you should organize a TSR so that
the resident portion is placed at the beginning of the program. To
demonstrate how resident programs work, POPUP and
RENEGADE are introduced. These programs save the current
screen in resident memory, but RENEGADE exerts absolute con-
trol over the keyboard interrupt. Once the keyboard is in it
grasp, RENEGADE does not relinquish control and excludes all
other resident programs from using this interrupt.

Introducing POPUP

The assembly language source code for POPUP is listed in
Figure 3. After it is installed in resident memory, the program is
activated by hitting both shift keys concurrently. The first entry
stores the current screen in resident memory, while subsequent ac-
tivations pop up the screen. If you have the inclination to run this
program, you must engage the Macro Assembler to convert
POPUP.ASM to POPUP.COM.

Figure 3. The assembly language source code for POPUP.ASM.

3220202523932 9333293302323 3232229302332 338339232933 2252)
; POPUP. ASM H
;Resident program to save screen. ;
;Press both shift keys to save first screen or to activate. ;
;Press Alt/Rt. shift keys to save new screen. B
; <ESC> to exit. ;

3PN NSNS I35 9953333203939 933)235923333)

VT SEGMENT AT @H ; INTERRUPT TABLE SEGMENT
ORG 9H*4

KEYBD DW 2 DUP (?) ;INT SH VECTOR

Ivr ENDS

H
CODE SEGMENT PARA PUBLIC 'CODE' ;CODE SEGMENT
ASSUME CS:CODE

ORG 100H
BEGIN: JMP INIT ;GOTO INITIALIZATION ROUTINE
OLDKB LABEL DWORD ;INT 9H ADDRESS IN ROM
OLDKEY DW 2 DUP (?) ;STORE OLD INT 9H VECTOR
SCREEN DB 4900 DUP ('S') ;STORE ORIGINAL SCREEN
SHIFT DB @ ;SAVE SHIFT STATUS CODE
STATUS DB @ ;CHECK NEW SCREEN STATUS
POPUP DB 4900 DUP ('P') ;POP-UP SCREEN

27

(Figure 3 continued)

’
;MAIN is made resident and every keystroke routed here.

H

MAIN PROC NEAR

STI
PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH SI

PUSH DI

PUSH DS

PUSH ES
PUSHF

CALL OLDKB
MOV AH,2

INT 16H

MOV SHIFT,AL
AND AL,3

CMP AL,3

JE SAVE
MOV AL,SHIFT
AND AL,

CMP AL,9

JNE EXIT

MOV STATUS,®
JMP SAVE

EXIT: POP ES

POP DS
POP DI
POP SI
POP DX
POP CX
POP BX
POP AX
IRET

sNEW INT 9H VECTOR POINTS HERE
;ENABLE INTERRUPTS
;SAVE REGISTERS

;SIMULATE INTERRUPT RETURN
;0LD KEYBD ROUTINE IN ROM
;RETURN KEYBD FLAGS

;SAVE SHIFT STATUS

;BOTH SHIFT KEYS PRESSED?
;IF YES, THEN SAVE SCREEN
;RESTORE SHIFT STATUS
;ALT/RT. SHIFT KEYS PRESSED?
;IF NO, THEN EXIT HANDLER
;EXPECT NEW SCREEN

;GET NEW SCREEN

;RESTORE REGISTERS AND EXIT

;RETURN TO PARENT PROGRAM

H
;This routine activated when both shift keys

;or Alt/Rt shift pressed.

H

;Save the original cursor position

SAVE: MOV AH,3
MOV BH,®
INT 10H
PUSH DX
PUSH CX

;Save the orliginal screen
MoV AX,PB80OOH
MOV DS, AX

;READ CURSOR POSITION
;SELECT PAGE @

;SAVE CURSOR POSITION
;SAVE CURSOR SIZE

;COLOR GRAPHICS MEMORY
;SOURCE SEGMENT
;SOURCE OFFSET

;DEST. SEG

MOV DI,OFFSET SCREEN ;DEST. OFFSET

MOV SI,0
PUSH PS

POP ES

CLD

MOV CX, 4000
REP MOVSB

;Determine if new screen

CMP STATUS, OFFH

JE READY

;CLEAR DIRECTIONAL FLAG
;MOVE 4000 BYTES
;FROM VIDEO TO MEMORY

;CHECK NEW SCREEN STATUS
;IF YES, THEN GOTO READY

;Move the first pop-up screen

PUSH CS
POP DS
PUSH Cs
POP ES

;SOURCE SEG

;DEST. SEG

MoV SI,0FFSET SCREEN ;SOURCE QOFFSET

28

MOV DI,OFFSET POPUP ;DEST. OFFSET
MOV CX, 4000 ;MOVE 4000 BYTES

REP MOVSB ;FROM SCREEN TO POPUP
MOV STATUS,@FFH ;CHANGE STATUS AFTER FIRST RUN
JMP POS

;Save new pop-up screen
READY: MOV DI,D
MOV SI,0FFSET POPUP

;DEST. OFFSET
;SOURCE OFFSET

PUSH CS

POP DS ;SOURCE SEG

MOV AX, 0B80OH

MOV ES,AX ;DEST. SEG

CLD

MOV CX, 4000 ;MOVE 4000 BYTES

REP MOVSB ;FROM MEMORY TO VIDEO

;Turn cursor off

POS: MOV AH,2 ;POSITION CURSOR

MOV BH,0

MOV DL,0 ;FIRST COLUMN

MOV DH,25 ;ROW OFF VIDEQ DISPLAY
INT 104

;Wait for escape keystroke

WAIT: MOV AH,0 ;WAIT FOR KEYSTROKE

INT 16H
CMP AL,27 ;ESCAPE KEY?
JNZ WAIT

;Restore original cursor

POP CX ;ORIGINAL CURSOR SIZE

POP DX ;ORIGINAL CURSOR POSITION
MOV BH,®

MOV AH, 2 ;SET CURSOR

INT 10H

;Restore original screen

MOV DI,? ;DEST. OFFSET

MOV SI,OFFSET SCREEN ;SOURCE OFFSET
PUSH cs

POP DS ;SOURCE SEGMENT

MOV AX,0B8OOH

MOV ES,AX

CLD

MOV CX, 4000

REP MOVSB

JMP EXIT
MAIN ENDP

;DEST. SEGMENT

;MOVE 4009 BYTES
;FROM MEMORY TO VIDEO
;HANDLER IS DONE

)
;INIT is executed once and is not made resident.

;
INIT PROC NEAR
MOV AX,IVT

;SET DS TO INTERRUPT VECTOR
TABLE
MOV DS,AX
ASSUME DS:IVT
MOV AX,KEYBD
MOV OLDKEY,AX
MOV AX,KEYBD[2]
MOV OLDKEY[2],AX
CLI ;DISABLE INTERRUPTS
MOV KEYBD,OFFSET MAIN ;INSTALL NEW VECTOR
MOV KEYBD{[2],CS
STI ;ENABLE INTERRUPTS
MOV DX,OFFSET INIT ;SAVE TO END OF MAIN PROCEDURE
INT 27H ;TSR

;SAVE OLD INT 9H VECTOR

CODE ENDS
END BEGIN

The Computer Journal / Issue #37

Here’s how POPUP works. The first instruction in the code
segment (JMP INIT) by-passes the MAIN procedure and skips to
the INIT procedure. The INIT procedure saves the old keyboard
vector and then chains INT 9H to the MAIN procedure. The last
instruction of the INIT procedure (INT 27H) makes the ultimate
sacrifice by allowing itself to be erased. It terminates the entire
operation but protects code from the start of the PSP to the end
of the MAIN procedure. Note how the DX register points to the
start of INIT (the offset one byte beyond the code protected).

Once installed, the MAIN procedure becomes our interrupt
handler. Every keystroke is intercepted by this handler and
redirected to the old INT 9H in ROM for processing. Our handler
then calls INT 16H to determine the last keystrokes. If both shift
keys had been pressed simultaneously, a branch takes place to a

_routine that saves the current screen. This screen will now pop up
whenever both shift keys are accessed. To save a new screen, the
. Alt and right shift keys are pressed. The escape key restores the
original screen and returns control to the parent program.

POPUP saves two screens: the application screen to be retur-
ned to and the ensuing pop-up screen. Storing a complete screen
demands a significant block of computer memory. The storing of
a color graphic screen consumes 4000 bytes, whereas the entire
POPUP program requires about 8200 bytes. As you can see, the
two stored screens account for 98% of the memory allocated to
POPUP.

POPUP is an example of a well-behaved resident program; it
does not attempt to sabotage other programs. But what if a
second resident program is installed, and it also seeks control of
the keyboard interrupt? The last program loaded will intercept
the keystrokes first, and then chain them to the previously loaded
TSR. A problem would arise if both programs attempted to ac-
cess the same hot keys.

Introducing RENEGADE

Not all resident programs are as well-mannered as POPUP.
Some have been labeled thugs, bullies, and outlaws. What have
these programs done to warrant such a reputation? When some
commercial programs replace the table address of INT 9H, they
exclude all others and do not allow concurrent use of a resident
program like POPUP. Let’s take POPUP and turn it into a bully.

The assembly language source code for RENEGADE, a not so
well-behaved resident program, is listed in Figure 4. The MAIN
procedure of this program, not presented in its entirety in the
figure, is identical to POPUP. RENEGADE performs the same
operations as POPUP; however, it takes over INT 1CH as well as
INT 9H. As mentioned previously, INT 1CH is taken 18.2 times
per second and does nothing except return from ROM. We will
use this interrupt to continuously monitor the interrupt vector
table.

The initialization portion of RENEGADE takes control of INT

Figure 4. The assembly language source code for RENEGADE.ASM.

3390920820255 33323232223233333932)2212)
; RENEGADE . ASM ;
;Same operation as POPUP.ASM but takes over INT 1CH and ;
;invokes CHECK procedure 18.2 times per second. ;
;Recaptures INT 9H and excludes other resident programs. ;

3292333555390 93939 29233393959 33325332333959399339333329)

IVT SEGMENT AT @H ; INTERRUPT TABLE SEGMENT

ORG 9H*4

KEYBD DW 2 DUP (?) ;INT 9H VECTOR
ORG 1CH¥*4

TIMER DW 2 DUP (?) ;INT 1CH VECTOR

IVl ENDS

L
CODE SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CODE

;CODE SEGMENT

ORG 100H
BEGIN: JMP INIT ;GOTO INITIALIZATION ROUTINE
OLDKB LABEL DWORD ; INT 9H ADDRESS IN ROM

DB 87H,PE9H,00H,0FOH
NEWKEY DW 2 DUP (?)
SCREEN DB 4089 DUP ('S')

;STORE INT 9H VECTOR
;CURRENT INT 9H VECTOR
;STORE ORIGINAL SCREEN

SHIFT DB @ ;SAVE SHIFT STATUS CODE
STATUS DB @ ;CHECK NEW SCREEN STATUS
POPUP DB 4@00 DUP ('P') ;POP-UP SCREEN

H
;MAIN 1s made resident and every keystroke routed here.

H
MAIN PROC NEAR ;NEW INT 9H VECTOR POINTS HERE

T *RKRNH
;¥%%%% IDENTICAL TO MAIN PROC IN POPUP.ASM *¥¥*¥
;***** R HHHK
MAIN ENDP

H
;O0nce installed, CHECK 1s invoked 18.2 times/sec.
;INT 1CH vector point here.

2

CHECK PROC NEAR
STI ;ENABLE INTERRUPTS
PUSH AX ;SAVE REGISTERS
PUSH BX

PUSH CcX

PUSH DX

PUSH SI

PUSH DI

PUSH DS

PUSH ES

PUSH o]

POP DS ;SOURCE SEGMENT
;Determine if INT 9H vector was changed

MOV SI,0FFSET NEWKEY ;SOURCE OFFSET

MOV AX,0

MOV ES, AX ;DEST. SEGMENT

MOV DI,9H¥*4 ;DEST. OFFSET

MOV CX,2 ;COMPARE 2 WORDS

REPE CMPSW

JE SKIP ; IF MATCH, EXIT

;Reinstate INT 9H vector
MOV AX,IVT

MoV DS, AX

ASSUME DS:IVT
CLI ;DISABLE INTERRUPTS
MoV KEYBD,OFFSET MAIN ;REINSTATE KEYBD VECTOR
MOV KEYBD[2],CS
STI ;ENABLE INTERRUPTS

SKIP: JMP EXIT

CHECK ENDP

H
;INIT is executed once and is not made resident.

’
INIT PROC NEAR

MOV AX,IVT ;SET DS TO INTERRUPT VECTOR TABLE
MOV DS, AX

ASSUME DS:IVT

CLI ;DISABLE INTERRUPTS

MOV KEYBD,OFFSET MAIN
MOV KEYBD[2],CS

MOV TIMER,OFFSET CHECK
MOV TIMER[2],CS

STI ;ENABLE INTERRUPTS

MOV DX,OFFSET INIT ;SAVE TO END OF CHECK PROCEDURE

; INSTALL NEW VECTOR

; INSTALL NEW TIMER VECTOR

INT 27H ;TSR
INIT ENDP
e
CODE ENDS

END BEGIN

The Computer Journal / Issue #37

29

1CH and directs it to the CHECK procedure in resident memory.
The old INT ICH vector need not be saved, since it merely
executes an interrupt return. The CHECK procedure, invoked
18.2 times a second, determines whether the keyboard interrupt is
chaining directly to the MAIN procedure in resident memory. If
the INT 9H vector was taken over by another program, the
CHECK procedure recaptures it.

RENEGADE is an example of a “‘selfish’’ resident program. It
_ does not permit chaining from one resident program to another.
The consequence is that other resident programs are excluded
from being activated by way of the keyboard. The worth of
RENEGADE is diminished by its lack of compatibility. This
program works only with computers storing their keyboard in-
terrupt routines at address FOO0:E987H.

To observe RENEGADE in action, load the program and
display the vector for INT 9H. Before executing, reboot the
‘system to purge any previously installed resident programs.

A>RENEGADE

A>DEBUG

-D0:24,27

0000:0024 4D 20 OE 06

The vector points to the MAIN procedure at 060E:204DH. This is
the address if RENEGADE is the first TSR loaded, and you are
using the DOS 2.10 version. Now install POPUP and display the
INT 9H vector again:

-Q

A>POPUP

A>DEBUG

-D0: 24,27

0000:0024 4D 20 OE 06

Interrupt 9H should still point to 060E:204DH. Once loaded,
RENEGADE assures that its handler has first claim to all
keystrokes. It not only recaptures the keyboard interrupt vector,
but denies POPUP any opportunity to be activated.

What happens if two resident programs attempt similar
strategies to take over INT 1CH? The last program loaded is the
one whose handler is invoked 18.2 times per second. In this game,
the program loaded last has the advantage. Now you can ap-
‘preciate why memory resident utilities such as SideKick,
SuperKey, and Prokey demand that they be loaded last. I tried
loading SideKick, an aggressive user of five interrupts, followed
by RENEGADE. The result was chaos with the hot keys giving
unpredictable and strange screens, even though, interestingly
enough, the system did not crash.

Evicting RENEGADE

Software packages are available which allow you to manipulate
resident programs. These utilities, often referred to as managers
or organizers, have the capability to remove programs from
resident memory without rebooting the system. A short program
(EVICT.COM) is introduced to demonstrate how to eliminate the
grip RENEGADE has over the keyboard interrupt.

Resident programs are distinct from normal ones in two ways:
(1) they do not release memory blocks when terminated, and (2)
they chain one or more interrupt vectors to themselves. To
remove RENEGADE form resident memory, we must restore the
interrupt vectors as they existed prior to its installation, as well as
release all memory blocks allocated. DOS function 49H will be
called to release memory blocks. The segment to be released is
specified in the ES register, while the length of the block is already
contained in bytes 4 and 5 of the memory control block. Display
the following resident memory locations:

-D0:6040,60EF

0000:60A0 4D OE 06 02 00 05 C8 00-A3 BD OB Al 02 00 8C 1E
0000:60B0 50 41 54 48 3D 00 43 4F-4D 53 50 45 43 3D 43 3A
0000:60C0 5C 43 4F 4D 4D 41 4E 44-2E 43 4F 4D 00 00 FF FF

30

0000:60D0 4D OE 06 14 02 D3 E8 8C-DA 03 C2 A3 1C 0B B8 00
0000:60EC CD 20 22 08 00 9A FO FF-OD FO 8C 02 42 05 99 02

The memory locations beginning at 0:60DOH represent the
memory control block for RENEGADE’s PSP/code. Three
paragraphs below is another memory control block. It begins at
0:60A0H and also points to RENEGADE’s PSP segment at
060EH. This memory control block identifies the environment.
The information stored here includes the path and file name used
to load RENEGADE. Removing a resident program requires the
release of memory blocks belonging to the environment and the
PSP/code.

-A100
DS:9180 CLI ;DISABLE INTERRUPTS
DS:0181 MOV AX,0000

DS:@104 MOV ES,AX ; SOURCE SEGMENT
DS:0106 MOV SI,@12E ;SOURCE OFFSET

DS:0109 MOV DI,0024 ;DEST. OFFSET (INT SH)
DS:018C MOV CX,0004 ;MOVE 4 BYTES

DS:@10F REPZ

DS:p11@ MOVSB

DS:@111 MOV DI,0070 ;DEST. OFFSET (INT 1CH)
DS:Q114 MOV CX,0004 ;MOVE 4 BYTES

DS:0117 REPZ

DS:0118 MOVSB

D3:119 STL ;ENABLE INTERRUPTS
DS:@11A MOV AX,060E ;PSP SEGMENT BLOCK
DS:@11D MOV ES,AX

DS:Q11F MOV AH,49 ;RELEASE PSP BLOCK

DS:@121 INT 21 ;CALL DOS

DS:0123 MOV AX,060B ;ENVIRONMENT SEGMENT BLOCK
DS:9126 MOV ES,AX
DS:0128 MOV AH, 49 ;RELEASE ENVIRONMENT BLOCK

DS:0124 INT 21
DS:@12C INT 20

;CALL DOS
;RETURN

DS:P12E DB 87,E9,00,F0 ;ORIGINAL INT 9H VECTOR
DS:@132 DB 49,FF,00,F0 ;ORIGINAL INT 1CH VECTOR
Figure 5. Assembler code for EVICT.COM.

We are ready to execute EVICT (Figure §), the program to
purge RENEGADE from resident memory. EVICT is an un-
sophisticated program and its sole purpose is to demonstrate how
to remove a single resident program from DOS 2.10. For EVICT
to work properly, RENEGADE must be the only TSR installed.
If necessary, reboot the system. Use the DEBUG ‘“A’’ command
to enter EVICT. The program restores the original vectors for In-
terrupts 9H and 1CH, and then releases the two memory blocks.
Save the program, execute from DOS, and return to DEBUG to
display the two memory control blocks:

-NEVICT.COM

-RCX

CX ?7?7?

:0036

-RBX

BX ?72?

:0000

=W

-Q

A>EVICT

A>DEBUG

-D0: 6040, 60EF

0000:60A0 4D OE 06 02 00 05 C8 00-A3 BD OB Al 02 00 8C 1E
0000:60B0 50 41 54 48 3D 00 43 4F-4D 53 50 45 43 3D 43 34
0000:60C0 5C 43 4F 4D 4D 41 4E 44-2F 43 4F 4D 00 00 FF FF
0000:60D0 5A OE 06 F2 79 D3 E8 8C-DA 03 C2 A3 1C OB B8 00
0000:60E0 CD 20 22 08 00 9A FO FF-OD FO 8C 02 42 05 99 02

The Computer Journal / Issue #37

Note the identifier byte at 0:60DOH contains the value SAH, the
designation that the next memory block is free. If you install a
new TSR, it will be stored at segment 060EH.

EVICT was a very easy program to create. We knew exactly
where RENEGADE was located in resident memory and which
interrupts it controlled. For DOS 2.10, EVICT removes the first
TSR installed, providing Interrupts 9H and 1CH were the only
ones taken over. The difficult assignment of writing a general
utility is to keep track of where each TSR is loaded and the in-

" terrupt vector table prior to installation.

Consider the scenario of installing RENEGADE followed by
POPUP, and then executing EVICT to remove RENEGADE:

A>RENEGADE
A>POPUP
-A>EVICT

. The memory control block defining RENEGADE’s PSP is

modified and can be viewed with DEBUG:

A>DEBUG
-D0000:60D0, 60D4
0000:60D0 4D 00 00 14 02

The identifier byte prevails as 4DH; however, bytes 2 and 3 are
filled with zeros. RENEGADE has been purged from resident
memory and its memory blocks released. The next TSR is not
stored in this vacated area, but immediately following the

memory control block containing SAH. A “‘hole”’ develops in
resident memory and all newly installed TSRs are placed above
POPUP.

Software packages are available that can disable and, later,
enable a resident program. These utilities are resident programs
that save entire interrupt vector tables prior to the installation of
every TSR. To disable a resident program, all interrupt vector
tables, except one, are loaded in the same order they were saved.
The address of the disabled program will be excluded from the
chaining of one handler to the next. Although the code remains in
resident memory, the program has no mechanism for activation.
The dormant resident program may be enabled by reinstating, in
the proper order, the excluded interrupt vector table.

In Closing

As the number of TSRs continue to multiply, a set of guidelines
would be helpful. Since IBM and Microsoft are not providing
leadership in setting standards, the major software developers
should. Some suggestions for guidelines include the assignment of
hot keys, designation of interrupts to be taken over, chaining
strategies from one handler to another, and procedure for
removal of resident programs.

Will it ever work? It seems unlikely. The technology is changing
too fast. By the time a set of standards are proposed and accep-
ted, they will probably be outdated. So until all TSRs are able to
coexist peacefully, the best hope is for users to stay informed. W

ZCPR3 Corner
(Continued from page 14)

the flexibility of pointing, for example, to
PROGRAM.Z80 and having PROGRAM.COM run. If there is
no COM file with a matching name, the error handler will take
care of things. You will note the leading colon before the ““$n”’
parameter. It makes sure that the current directory is searched
even if it is not on the path. Prompted input is used to allow a
command tail to be included.
The Z macro performs a user-specified function on the pointed-

tto file. Two separate user prompts allow both the command and a
" command tail to be given. For example, if you wanted to squeeze

the file to AO:, you would enter ‘‘SQ’’ in response to the first
prompt and ‘‘A0:”’ in response to the second.

The 0 macro illustrates how the response to a prompt can be
used as a ZFILER script. This macro takes care of all those fun-
ctions we forgot to include in ZFILER.CMD. The whole macro is
just prompted input, and whatever we answer will be run as a
script. I use this function so often that I put it on a number key so
that it can be invoked with a single key rather than the usual pair.
Also, as you may have noticed, I include in the macro help screen
a list of the parameters that can be used.

The only real limitation of this macro-to-write-a-macro ap-
proach is that prompted input cannot be included in the response.
As I write this, however, it occurs to me that this limitation could
be overcome by recursively parsing the prompt parameters until
none remain, and only then going on to the subsequent macro ex-
pansion steps.

Well, I was going to discuss patching and configuring ZFILER,
but this article is already too long, so that will just have to wait for
another time. I hope that this article will help you get more out of
ZFILER. See you in the next issue! Il

The Computer Journal / issue #37

XED4/5/8 Integrated Editor Cross-Assembler

XED4/5/8 is a fast and convenient method to develop and

debug small to medium size programs. For use on Z80

machines running Z-system or CP/M. Companion

XDI1S4/5/8 disassembler also available.

Targets: 8021, 8022, 8041, 8042, 8044, 8048, 8051, 8052.
8080, Z80, HD64180, and NS455 TMP.

Documentation: 100 page manual.

Features include:

* Memory resident text (to about 40 KB) for very fast

execution. Recognises Z-system’s DIR: DU:. Program

re-entry with text intact after exit.

* Built in mnemonic symbols for all 8044,51,562 SFR and
bit registers, NS455 TMP video registers and HD64180 |/0O
ports.

* Output to disk in straight binary format. Provision to
convert into Intel Hex file. Listing to video or printer. A sorted
symbol table with value, location, all references to each
symbol.

* Supports most algebraic, logic, unary, and relational
operators. Eight levels of conditional assembly. Labels to 31
significant characters.

* A versatile built in line editor makes editing of individual
lines, inserting, deleting text a breeze. Fast search for labels
or strings. 20 function keys are user configurable.

* Text files are loaded, appended, or written to disk in whole
or part, any time, any file name. Switchable format to suit
most other editors.

* The assembler may be invoked during editing. Error
correction on the fly during assembly, with detailed error and
warning messages displayed.

For further information, contact:

PALMTECH

{a division of Palm Mechanical}

Phone: 6177 463-109 Fax: 6177 463-198

cnr. Moonah & Wills Sts.
BOULIA, QLD. 4829
AUSTRALIA

31

Advanced CP/M
by Bridger Mitchell

ZSDOS News

The brand-new CP/M disk operating system—ZSDOS—that I
announced in this column last fall is meeting an enthusiastic
reception. At that time [wrote that the quality of the design and
testing that have gone into this project means we are unlikely to
see a long series of revision numbers to fix bugs. But I didn’t
mean to imply that a major upgrade, ZSDOS 2.0, might never
appear! Indeed, 1 should have gone on to say that we may expect
further contributions from the design team.

In the first of a multi-part article in this issue of TCJ, two of the
ZSDOS authors—Hal Bower and Cameron Cotrill—take you
behind the scenes of the many innovations in the new DOS. And
several of you have asked about porting ZSDOS to banked-
memory (HD64180, Z80) systems. Well, early discussions are
afoot to set specifications for a banked-memory version with well-
defined memory-management services.

Meanwhile Carson Wilson, the third member of the team, has
been avidly turning out system utilities with nifty new features
and is at work on a Z-System version of a popular public-domain
memory-based editor.

If you haven’t already ordered it, ZSDOS is available from
Plu*Perfect Systems and Sage Microsystems East.

Feedback Loop

With the demise of yet another magazine (Profiles) that
provided some coverage of CP/M topics, TCJ takes on greater
prominence as a continuing source of high-quality CP/M infor-
mation. Art Carlson and we regular columnists need your feed-
back and suggestions to keep expanding and broadening TCJ’s
material.

I've appreciated the cards and BBS messages several of you
have sent. They indicate that you find these columns worthwhile,
although not always fully digestible in one sitting! I will continue
to focus on more advanced technical topics relating to the CP/M
operating system, aiming to get the core concepts and details into
print. I fully expect readers to extend, expand, revise and critique
these pieces—that’s how our hobby progresses!

I’d especially like to receive suggestions for topics for future
columns. One early candidate is methods to make the Z-System
external environment address available to applications that have
not been coded as a Z-System tool, including compiler-generated
COM files.

I’d also welcome information about adding 3.5” and high-
density 1.2MB 5.25" drives to CP/M systems. I’ve recently
customized DosDisk for an OEM to handle the AT-style 1.2MB
floppy disk format. The DosDisk software could be similarly ex-
tended to handle the 3.5” MS-DOS format, but in order for this
to be usable the BIOS must talk to the drive. Some of you have
doubtless done this, or at least thought it through. It would make
a nice TCJ article!

Unit-Record Input/Output

A processor is isolated and quite useless until it can talk to the
““outside world”’. Input and output are essential—they supply the

32

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s
the author of the widely used DateStamper (an automatic, por-
table file time stamping system for CP/M 2.2); Backgrounder
(for Kaypros); BackGrounder ii, a windowing task-switching
system for Z80 CP/M 2.2 systems; JetFind, a high-speed string-
search utility; DosDisk, an MS-DOS disk emulator that lets
CP/M systems use pc disks without file copying; and most recen-
tly Z3PLUS, the ZCPR version 3.4 system for CP/M Plus com-
puters.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

processor with data and enable it to report results. Memory chips
provide the fastest I/0. After that come hard disks, floppy disks,
magnetic tape, and serial channels at decreasing data rates.

In TCJ #35 we covered file systems. Input and output to files is
done in blocks (physical sectors) of many bytes, and file storage
devices (floppy disks, hard disks, tape drives, ram disks) are
sometimes called block-devices.

Our interest in this column is input/output to/from character
devices—devices that normally supply or accept one byte at a
time, such as a terminal, printer or modem. Single-byte devices
are sometimes called unit-record devices; they can be thought of
as special block devices with a record length of one.

For many purposes it’s useful to think of the computer’s sof-
tware environment as a series of rings. At the outer ring are the
application programs. Just inside are the high-level languages,
and inside that is the operating system. Its outermost layer is the
BDOS, providing a standardized, hardware-independent set of
high-level services for access to the file structure and bundled in-
put/output services to various devices.

The next ring is the BIOS, providing all of the primitive in-
put/output services needed by the BDOS. It is the border land
between a standard system and the specific computer. At the
BIOS jump table the interface is completely standardized, but
within the BIOS the system designer must program down to bare
metal, coding routines that know the precise conditions of the
hardware—disk drive, video display, printer handshaking con-
ditions.

In general, applications will be more portable and easier to
write if they confine their operating system access to the outer
ring—BDOS calls. Yet there are good reasons for using BIOS
calls in some applications, those that require highest performance
or services unavailable from the BDOS. And in a few cases, an
application must forego portability and itself directly access the
hardware, because no BIOS service is available; for example, to
read a video terminal’s screen or use a modem port.

The CP/M 2.2 BIOS provides character-device services for the
basic device needed to command the system (the console), an
auxiliary device, and a printer. These services are:

The Computer Journal/ Issue #37

CONSTAT Console Input Status
CONIN Console Input

CONOUT Console Qutput
READER Auxiliary Input
PUNCH Auxiliary Output
LISTSTAT Printer Output Status
LIST Printer Output

Each input or output service returns or sends a single byte. For
input, the routine waits until a byte is ready before it returns; for
output, it waits until the device can accept the byte.

Strangely, only one BIOS input device and one output device
has a status call function available to an application. The BDOS
or an application can determine, by calling CONSTAT, whether a
" character is waiting in the input (a key has been pressed).
Similarly, it can call LISTSTAT to see whether the printer is idle
and can accept a character.

But there is no portable way, in CP/M 2.2, to determine
whether the console device is ready to accept a character. All you
can do is call CONOUT to send the character and wait, hoping
that the device will eventually be ready. This might seem all right
{how would you run a CP/M system if you couldn’t see its con-
sole output?). But, consider an application that wants to keep the
processor running at full efficiency (perhaps a video game, or just
a smart display utility). It would like to send a character to the
console only when it knows that it will be processed immediately.

Internally, however, the BIOS must have a routine to determine
the input and output status of every device. In order to obtain a
valid byte of input it must not access the physical device (a parallel
port, an asynchronous receiver chip) until the device signals, by
some type of status report, that a byte is ready. And similarly, the
BIOS must not output a byte to a physical device (video ram,
serial transmitter chip, parallel port) until the device signals that
its buffer is empty and ready to receive a byte.

Cooked Input

The BDOS provides standardized services to applications,
hiding some of the tedious details of communicating with the in-
put and output devices. For the console device the BDOS
provides cooked (processed) input and output services, sparing
the programmer the overhead of including this code in almost
every application. For applications needing raw console input and
output, the BDOS also provides a raw (uncooked) function #6.

In CP/M 2.2, console single-character input function (#1)
provides:

e echo to console output
¢ flow control

¢ abort control

* tab expansion

In addition, the console line-input function (#10) provides
limited line-editing and printer controls:

delete last-character (backspace)
cancel line (*X or AU)

retype line (*R)

list device output control

(Other function #10 editing controls—delete and echo, and end
physical line—existed to serve paper-output teletypes. BDOS pat-
ches and replacements such as ZSDOS have eliminated them.)

Both the console single-character output function (#2) and the
string output function (#9) provide:

o flow control

Flow Control and Lookahead

Flow control is the process of starting and stopping the flow of
bytes over an input/output channel. Our concern here is the con-
trol of bytes to the console device.

The Computer Journai/ issue #37

The BDOS is designed so that the user can ‘‘freeze’’ a screen of
messages by typing a Control-S—the standard XOFF character.
Output will resume by typing Control-Q—the standard XON
character. Actually, output resumes when any other character
(except Control-C—the abort character) is typed, but it’s a good
habit to use Control-Q to keep your fingers conditioned for
systems, such as UNIX, that use the standard control characters.

In order for flow control to work, the application must print its
messages using BDOS functions #2 and #9.

Flow control requires something that many—including com-
piler authors and BDOS hackers—have found astonishing: the
BDOS console-output functions must call the BIOS console input
functions in order to perform a lookahead function. After all,
how else could the BDOS know that the user had typed a Control-
S to suspend output?

It works like this. Before the BDOS sends a character to the
console, it checks the console input status. If no key has been
pressed, the character is sent.

But suppose a key has been typed. In this case the BDOS calls
the BIOS console input function to get the character. From this
moment on, the character is no longer in the BIOS. The BDOS
then tests whether the character is a Control-S. If it is, the BDOS
waits for the next keypress and only then sends the output charac-
ter. If it is not Control-S (or Control-C, discussed below) the
BDOS saves the character (say A’) in a one-character buffer and
sends the output character.

If the next operation is to print another character on the con-
sole, the BDOS test for flow control will become ineffective. The
BDOS has only the one-character buffer, which is now full (it’s
holding the ’A’), so it cannot check the next keypress for Control-
S; if it did, and the character were anything else, it would have to
throw away one of the input characters.

The lookahead function might perhaps have been better im-
plemented by providing a ‘‘peek’ subfunction to the BIOS
CONIN-—return but retain the pending next character.

The key result is that the next console input character is moved
from the BIOS into the BDOS one-character buffer as a result of
any BDOS function #2 or #9 output. As a consequence, any ap-
plication that uses the BIOS to obtain console input will
sometimes ‘‘lose’’ a typed character, only to have it emerge when
the BDOS is next used for input (function #1 or #10)!

Coping With Missing Characters

The simplest rule I can give you for coping with missing charac-
ters is to keep all console input/output at one level of the
operating system—all BDOS or all BIOS—within a single ap-
plication. For example, don’t mix BDOS line input (function #10)
and BIOS CONIN.

It’s fairly common for applications to use the BIOS functions
for console 1/0, in order to speed up output and to get every
possible keyboard character. The Z3LIB and VLIB routines used
in many Z-System utilities do so. At the start of such an ap-
plication you may need to check the BDOS, using function #11,
to see if a fast keypress has already been sucked into the BDOS
one-character buffer. If it returns non-zero, you can get the
character with function #1 (but that will echo). In order to use
function #6 successfully to get the character without echo, you
need to have installed the Plu*Perfect Systems patch (described
later).

Jay Sage has used the following method of obtaining input (a
named-directory password) from BDOS function #10 with
echoing shut off. First, save the first byte of the BIOS CONOUT
jump vector (it should be the JP opcode) and replace it with a
RET opcode. Next, call BDOS function #10. When the BDOS
calls the BIOS CONOUT to echo the character, the BIOS will
return at once. Then, immediately following the BDOS call,
restore the first byte of the BIOS CONOUT jump. (Note that he
follows the sound principle of saving and restoring the environ-
ment, by saving and restoring the byte in the BIOS “‘jump vec-

33

Plu*Perfect Systems == World-Class Software

(SE=To (T o 1V0q Lo [T o | OO $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

5 TE5] (=1 o o 1 USSR $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

L {0 D $20

Z-System segment loader for ZRL and absolute files. (included with Z3PLUS and
NZ-COM)

AT 510 1 S $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK cereemiiereeiirernecesrrrmrsnssssesssssnssssasesmmmansseessmmnnsssssannnnnsssnsennn $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ONI, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

L8 0 $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

8 LY (] o [$50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. ‘ 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402

foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetL.LDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

The Computer Journal

Figure 1. Corrected CP/M 2.2 BDOS Function #6 Routine
Authors: Derek McKay, Bridger Mitchell (Plu¥Perfect Systems)
0000 bdos equ 2000h ; base of CP/M 2.2 BDOS
20B7 abort equ bdos+@9B7h ; '"'Jp ooge'!’
POFB getchar equ bdos+@@FBh ; get next console input char.
9301 setretval equ bdos+@301h ; set return value in A
2304 charbuf equ bdos+83@4Ah ; l-character input buffer
D91 exit equ bdos+0D91h ; BDOS exit routine
QEQD bios equ bdos+Peddh ; base of BIOS
PEQE constat equ bilos+6 ; console status
REDO conin equ blos+9 ; console input
QEBC conout equ bios+@Ch ; console output
; -- original (8080@) Direct Console I/0 Routine --
; malfuncting code marked with ''¥¥x'!
22D4 org bdos + 2D4h
9204 79 fné: 1d a,c
9205 3C ine a
p2D6 CA Q2ED Jjp z,fnéin
92D9 3C ine a
@2DA CA QEQ6 fnbs: jp z,constat 5 KEX
920D C3 OEQC Jjp conout
P2EQ CD QE@6 fn6in: call constat 5 KR
P2E3 B7 or a,a
P2E4 CA QD91 Jp z,exit
@2E7 CD QEQ9 call conin 5 KRE
@2EA C3 9301 Jp setretval
; -- corrected (z82) routine --
02D4 org bdos + 2D4h
s’
P2D4 79 fné: 1d a,c ; if ¢ == FF
9205 3C ine a
9206 28 08 Jr z,fnéin ; ..get character
9208 3C inc a ; if ¢ == FE
9209 CA 0137 Jp z,ckstat ; ..get input status
; of buffer & bios
P2DC C3 QERC Jp conout ; ..else output char
fnbéin: call ckstat ; check both buffer
H and bios
P2DF CA QD91 jp z,exit ; ..no char waiting,
; return @ status
@2E2 CD QOFB call getchar ; get char from buffer
; or bios
Q2E5 18 1A jr setretval ; and return it
2

tor’’. he doesn’t simply assume it is a JP. It’s possible that other
code—perhaps in an RSX—has already patched this location.)

This trick is handy, but should be used only where no other
solution is available. In Jay’s case, there was insufficient room in
the Z34 command processor to collect a password with function
#6. The difficulty with this approach is that during the time that
the BIOS CONOUT is patched out it is possible that other
processes would be generating console output. What other
processes could there be in CP/M? If BackGrounder ii is loaded,
a press of the <SUSPEND> key would temporarily suspend the
current task and prompt for user input, but the prompt would be
invisible! Or an interrupt-driven task could generate a screen
message that would be lost.

Abort Control
A Control-C will cause the BDOS to abort the current ap-
plication, jumping directly to 0000, when it is:

¢ the first character typed after a Control-S
has halted output from function #2 or #9.

The Computer Journal / Issue #37

® the first character typed to line-input
(function #10)

The abort control feature of the CP/M
2.2 BDOS is a mixed blessing at best. It
gives the user a handy way to kill a job
that is scrolling unwanted output to the
screen. But it limits the use of edited
BDOS line input to applications that can
tolerate abrupt termination if the user
happens to hit Control-C. As a result,
most well-written applications must in-
corporate their own line editor in order to
retain control to avoid being canceled
with unclosed files, open modem connec-
tions, or whatever.

Cooked Output

In addition to flow control, which is a
feature of cooked console input that con-
trols the flow of output, the BDOS alters
the raw output to the console by special
processing of tabs and by creating a
parallel stream of output for the printer.

Tab Expansion

The BDOS expands the horizontal tab
character (09h) to the number of spaces
required to reach the next logical tab stop
(every eight characters). To do this it
keeps a current-column count for all out-
put to functions #2 and #10, resetting it to
0 on each carriage return.

This is a handy cooked-output service.
But to work successfully, all output on the
line must go through these BDOS fun-
ctions. Avoid mixing BDOS and BIOS
console output on the same line.

Echoing to the Printer

The BDOS maintains a flag that, when
set, causes function #2 and #9 output to be
echoed to the BIOS list device as well as
the console output. The flag is toggled
when a Control-P is typed to function
#10—the line-input function.

Control-P is very handy for getting a
quick, selective printed record of some
console output. It can also mysteriously
freeze your system when the printer is not
ready. When your computer locks up,
make a habit of checking the attached ex-
ternal devices (printer, modem) before
you resign yourself to pressing the reset
button!

The Case of the Missing Character

If you’ve used a number of CP/M
systems, you’ve probably had the puzzling
and quite annoying experience of oc-
casionally ‘‘losing’’ one character you
have typed when running a program, only
to have it pop up unexpectedly much
later, perhaps at the next command
prompt. It’s a difficult bug to reproduce,
and occurs only on some systems. This
spooky gremlin is so perplexing that a user
can begin to believe his computer is truly
haunted!

35

Has CP/M been visited by the super-
natural? Probably not. We’ve already
seen how mixing BDOS and BIOS console
functions can cause an input character to ’
become stuck in the BDOS one-character
buffer when subsequent input is obtained
by BIOS calls.
Several years ago, Derek McKay, my
partner at Plu*Perfect Systems, spotted
another cause of missing characters—a
bug in Digital Research’s original design
of the CP/M 2.2 BDOS that used fauity
logic in the handling of ‘‘raw”’ console in-
.put with BDOS function #6. Moreover,

Derek developed a Z80 patch that corrects
- the problem and fits in the original BDOS
space. This is an important improvement,
because without it there is no totally
reliable way to mix cooked BDOS console
I/0 with any type of raw 1/0, either
BIOS or BDOS.

We included the patch in the CP/M
Enhancements that Plu*Perfect originally
published for Kaypro systems. More
recently, the authors of ZSDOS have in-
corporated the same logic into their ex-

0123

9126 B7

p12D E6 91
P12F C8

9133 FE 13

013B FE 03

0140 AF
@141 C9

9145 3E 01
9147 €9

cellent new DOS. So, on these systems, 9123 org bdos + 9123h
the missing character doesn’t manifest it-
self. 9123 CD 9137 lkahead:call ckstat ; if no char waiting
p126 C8 ret z ; ..return
Raw Console Input 9127 DC DER9 call ¢,conin ;3 if no char in buffer,
H call bios

'To understand how a character can 0124 FE 13 ep g . 1f not AS
dlsappear’ ar_ld then reappear, we first 212C 20 14 jr nz,savechar ; ..return the char
Peed to examine the BDOS’s raw console P12E CD QE9 call conin ; S, so get next char
input function. 9131 FE 03 cp 1grarg i if AC

BDOS function #6 was intended to 9133 28 82 jr z,abort ; ..abort
provide absolutely raw console input and 0135 AF xor a,a ; else return false
output functions accessible by a BDOS 0136 C9 ret i status

. call, with no input flow control and no
output processing. An application would
use this function, for example, when it

. 0137
wanted to get a character without 0134 BY
necessarily echoing it to the terminal. 2138 g
DRI attempted to squeeze input, input 913C CD OE06
status, and output into a single BDOS P13F BY
function (probably to save 8080 code 0149 OF
P141 C9

space) and in doing so somewhat limited
the usefulness of this service. To use fun-
ction #6, set C=6 and

Figure 2.

; -- original (8088) console input look-ahead routine --

9123 3A 030A lkahead:1d
0127 C2 9145
012A CD DED6
9130 CD PE@9

9135 C2 9142
2138 CD QE@9

913D CA 0000

@142 32 @30DA savechar:ld

-- shorter replacement (z8@)

new check-console-status (z82) routine

3A @30A ckstat: 1d

; resume original (8088) code at @142h

Console Look-Ahead Routines

org bdos + 9123h

a, (charbuf)

or a,a

Jp nz,returnl

call constat

and 1b

ret 2

call conin

cp 1gr-t@!

Jp nz,savechar

call conin

cp 1cr-1@!

Jp z, 0000

xor a,a

ret

(charbuf),a ; save input char
; in buffer

returnl:1ld a,l ; return a non-zero

ret ; character

routine --

a, (charbuf) if buffered char waiting

or a,a ; ..clear CY and return NZ
ret nz

call constat ; else check bios for a char
or a,a ; if char waiting there

rrca ; ..set CY and set N2

ret

E= OFFh to get a character, if ready
E= OFEh to get console input status
(E=0FDh to wait for a character)

E= 0...0FCh to output the value in E to the console

When used for input, function #6 returns a 1-byte value in A, If
A is 0, no character is waiting; a non-zero value is the input
character. Thus it is impossible to enter a NUL character (Con-
trol-@ on most keyboards) when function #6 is used. (This defect
is significant for editors, which must therefore use BIOS fun-
ctions for console 1/0.)

When used for output, function #6 is limited to values Oh to
OFCh. Usually ok, this restriction makes some 8-bit coded
graphics characters unprintable on a few terminals. (The subfun-
ction code OFDh is used by CP/M Plus and ZSDOS to wait for
the next character and return it.)

But the real bug in function #6 is its internal check for input
status. The original BDOS code (figure 1) calls the BIOS CON-

36

STAT routine to determine if a character is waiting. This is fine,
except that another BDOS function may have called the
lookahead routine to test for flow control and left the tested
character in the lookahead buffer. When that situation exists,
function #6 will return A =0 (no character waiting) until a key is
typed, and then return the next typed character, not the one last
typed and still in the buffer!

Meanwhile, the tested character continues to sit in the buffer.
Eventually, someone—either the application program or the
command processor—will call a BDOS function that does check
the lookahead buffer before returning a character. It will find the
character still there, and return the missing character!

Code

Figure 2 contains the replacement routine. It calls a new
“‘ckstat’’ routine to determine input status. The new routine just
fits into the space made available by rewriting the ‘‘lkahead’’

(Continued on page 38)

The Computer Journal/ Issue #37

Real Computing

The National Semiconductor NS32032

by Richard Rodman

First, let me apologize to everyone who tried to call my BBS
- and found it disconnected. I’ve moved to Manassas (of battlefield
and shopping mall fame). The new number is listed below.

Floating point

When it comes to floating point, there are three kinds of
people. First, there are the reasonably balanced people, who
don’t know much about it but use it from time to time, say, to
balance their checkbook. Second, there are the hard-core scien-
tists and statisticians who write Fortran programs with COM-
PLEX*16 variables and judge computers only by their array-
processing MFLOPS. Lastly, there are the hands-dirty assembler
and real-time programmers who will go to any fixed point length
to avoid floating point, and who view floating point as the
ultimate expression of sloth and wastefulness.

1 have to admit that I fit into the last category. I take some
pride in the fact that, in the last five years or so, I haven’t written
a single program that used floating point. However, I will concede
that this is an irrational point of view, and that there are many
legitimate uses for floating point. Space flight, for example: Neil
Koozer has written, in NS32 assembler, a highly detailed and ac-
curate moon flight simulation. It makes use of the NS32 floating
point unit to provide fast and highly accurate floating point math.

. The 32081 Floating Point Unit (FPU)

The 32081 FPU uses the 16-bit slave processor protocol, so it
can be used with the 32016, 32032, 32008 or 32332 CPUs. It has
also been used with 68000 and Z8000 family chips. When used
with an NS32 CPU, however, it becomes integrated right into the
machine’s instruction set. Thus, programmers don’t need to
worry about its address or any other implementation con-
siderations.

The 32081 has 8 general-purpose floating point registers called
FO to F7, each of which is 32 bits long, and a floating point status
register (FSR). Registers can be combined in pairs, called L0, L2,
L4, and L6, for 64-bit operations. The floating point storage
follows the IEEE standard.

Floating point operands are used in regular instructions just
like any other ones. Here are some examples:

MOVF FUEL,F1 Load FUEL into F1

MOVF FLOW(RO),F1 Load value indexed by RO into F1
ADDF F1,F2 Add F1 to F2

SUBF F1,BALANCE Subtract F1 from BALANCE

SUBF CHECK,BALANCE Again, no need to go through

registers. Operands can be used
directly to and from memory.

The FPU implements add, subtract, multiply, divide, negate,
absolute value and compare instructions. It doesn’t do the fun-
ctions such as sine, tangent and hyperbolic sine.

Why not? Well, here arises the philosophical difference bet-
ween the National approach and the Intel/Motorola approach.
The National FPU implements primitives only, so that the im-
plementor can optimize the processing for his specific application

The Computer Journal/ Issue #37

as well as detecting problems in intermediate values during the
calculation of an advanced function. It is easy to code, for exam-
ple, a sine given these primitives, and having the CPU involved
allows each intermediate value to be tested for convergence ac-
cording to the programmer’s criteria. Further, the CPU is not left
inactive for long periods of time, only to get a result that has
unknown precision because the intermediate values could not be
checked.

The 32381 Floating Point Unit (FPU)

The 32381 floating point unit can use either the 16-bit or the 32-
bit slave processor protocols, and thus can be used with any NS32
CPU. 1t is fully software-compatible with the 32081, but faster
(especially when the 32-bit protocol is used) with a 32332 or
32532. A few new instructions have been added, which allow easy
testing and manipulation of the floating point exponent and man-
tissa. These instructions are intended to provide authors of
floating point software the tools to more quickly detect under-
flows, overflows or other conditions involving potential loss of
precision.

The 32580 Floating Point Unit (FPU)

The 32580 is National’s highest performance floating point
unit, which embodies a new approach. Rather than perform the
operations itself, it manipulates the operands and uses a high-
speed Weitek floating point chip set to do the actual math. This
device only uses the 32-bit slave processor protocol and can only
be used with the 32332 or 32532. It is intended as a high-end
product for use in workstations and other systems where cost is
not as much a factor as floating point speed.

Neil has pointed out that in 32016 and 32032 systems, the
primary time-consumer is not the math, but the loading and
storing of floating point operands in main memory. The 32081 is
thus ‘‘fast enough’’ for these CPUs, and the 32381 is ‘‘fast
enough’’ for the 32332. With the 32532, however, this was no
longer the case, and the new approach of the 32580 became
feasible.

The 32832 Memory Management Unit (MMU)

Last time, I discussed the 32082 MMU at length and included a
sample program. I neglected to discuss the new 32-bit MMU, the
32382. This MMU supports the full 32-bit address range of the
32332. Since the 32532 has an MMU built-in, the 32382 is usable
only with the 32332. However, I believe the 32532’s built-in MMU
to be substantially the same as the 32382.

The 32-bit addressing range gives an addressing range of 4
gigabytes, Because of this extremely large addressing space, the
page size of the MMU has been increased to 4096 bytes. The level-
1 and level-2 structure is analogous to that discussed for the
32082, if not a little more symmetrical. Each level-1 page entry (a
‘“‘superpage’’) controls 1024 level-2 page entries, or 4 megabytes.

Now, if the operating system uses a common level-2 page table
with a separate level-1 page table for each task, you might say,
“Gee, I'll have to have 8MB of RAM for a single task!”’

37

However, remember that these are virtual addresses, and the
mapping of virtual to physical addresses is controlled by the
MMU. Any page of physical memory can be assigned to any
page, even multiple pages, of virtual memory. Naturally, there are
certain pages that will have to be “‘locked”” in place (such as the
MMU support code), so there will be a minimum amount of
KAM you will have to have in the system—more than just 4K,

At any rate, the operating system software will have to be easily
configurable to either page size. Even further, the swapping page
-size should be configurable independently from the MMU page
size.

New coprocessor boards

There are some new coprocessor boards available for those who
want to run Unix on their PC-type system. All of the 32332-and-
up boards require an AT-clone with its 16-bit bus for 1/0.

_ The Zaiaz coprocessor boards are available from Amazz Com-
puters. There are both 32032 and 32332 boards available. They
come with Unix system V, you just plug them in and go.

Opus Systems has coprocessors for the 32032 and the 32332,
and just recently announced a 32532 coprocessor board. This
board sells for $7000. With that and a nice graphics board, you
could just plug together a workstation with more power than a
Sun 4. Yes, you could ‘‘extinguish the SPARC.”’

There is a designer’s kit for the 32532, but it is a little out of the
hobbyist range, costing about $1000. It comes with a 32532, a
printed circuit board, monitor PROMs, PALs and documen-
tation.

The free operating system
Those who wish to participate in the free OS project may ob-

tain the pre-release version of Metal, version 0.2, which appears
to be basically functional. It is single-tasking and very crude. Send
me a diskette and return postage in a reusable mailer. Or, you
may obtain it from the BBS. I’ll try to put together some
documentation, too.

Next time

Art Carlson has thrown out the question of what the personal
computers of the 90s will be like. Last time, I discussed how these
computers would be set apart from what went before, by virtual
memory. Next time, I’ll go into more particulars about connec-
tivity, compatibility, and computational power of these new
systems (as I envision them). These machines are being designed
today, but don’t look for them on the drawing boards of Apple or
IBM. The designs could be as close as your own desk!

Where to write

John Dodd, Amazz Computers
506E Clinton Avenue
Huntsville AL 35801

(205) 534-6823

Opus Systems Inc.
20863 Stevens Creek Boulevard
Bulding 400
Cupertino CA 95014

Richard Rodman
8329 Ivy Glen Court
Manassas VA 22110

BBS: 703-330-9049
|

Advanced CP/M
(Continued from page 36)

Registered Trademarks

routine just above it in z80 code.

Note the exact logic of the ckstat
routine. By clever coding it returns two
flag values—nonzero and carry not set
when the next character should be ob-
tained from the BDOS and nonzero and
carry set when the next character should
be obtained from the BIOS.

With this new routine, the lkahead
routine can determine from calling ckstat
whether to call the BIOS CONIN.

Patching Your BDOS

If you are running the original CP/M
2.2 BDOS you can upgrade it with the
function #6 patch. Using a debugger, first
check that the original 8080 code is exactly
as shown in the figures. Then assemble
just the patch code with the BDOS equate
set to the base value for your system, and
output a hex file.

The hardest part is getting the patch in-
stalled in your system. You can load it
with a debugger, and then check memory
to see that it is installed. But if your
system reloads the BDOS on a warm boot,
the patch will be gone when the next
program runs. If that’s the case, you will
need get the patch into the
SYSGEN.COM image of the BDOS.

38

Load SYSGEN.COM with a debugger.
On most systems, the BDOS image begins
at 1200h. Compare the bytes there and in
the running BDOS in high memory and
then compare the bytes at the patch
locations in the image (by adding 1200h to
the addresses in the figures here) and in
high memory. If all matches up, load the
hex patch into the high BDOS, compare
again, and then move just the patched
bytes of the two upgraded routines to
their corresponding location in the
overlay:

MBDOS+0123,BD0S+0141,1200+0123
MBDOS+02D4 , BDOS+02EC, 1200+02D4

Then save the appropriate number of
pages of the modified XSYSGEN.COM.
Run XSYSGEN and place the system on
the boot tracks of a scratch disk. Boot the
disk, test the system for normal
operation, and then with a debugger
check the high BDOS to see that the pat-
ches are indeed in place.

Note that this patch will not work with
ZRDOS or other replacement BDOSes. It
may be possible to write a functionally
equivalent ZRDOS patch, if you can find
enough free space in a BDOS that is
already in Z80 code. W

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Apple 11, 11+, IIc, lle, Lisa, Macin-
tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-
per, BackGrounder ii, DosDisk; Plu*Per-
fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase 11, dBase I1I,

dBase 1II Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.

IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. 780, Z280; Zilog Cor-
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc-
currence.

The Computer Journal / 1ssue #37

ZSDOS

Anatomy of an Operating System
by Harold F. Bower and Cameron W. Cotrill

Harold F. Bower, Major, US Army Signal Corps. BSEE,
MSCIS, Ham (WASJAY), avid homebuilder (starting with 8008
running SCELBAL).

Cameron W. Cotrill, Vice President, Advanced Multiware
Systems; specialist in ‘‘impossible’’ real-time hardware and sof-
tware systems.

It has been many years since Digital Research released CP/M
2.2, and much has changed since that time in the speed, capability
and flexibility of 8-bit general purpose microcomputers. CP/M is
one of the few operating systems that runs on a wide variety of
hardware, and is widely supported. Other than the current
popularity of MS/PCDOS, UNIX and its derivatives have been
the closest competitors to the universality of CP/M, with only the
UNIX family being hosted on more hardware types. This har-
dware independence is perhaps the single strongest point of
CP/M, and we venture to guess that more than a few PCDOS
users have wished for this kind of flexibility. In recent years,
however, better and faster 8-bit hardware has been more
available, and has fostered vastly improved software such as
BackGrounder ii, DateStamper and the ZCPR 3.X series of Con-
sole Command Processors. On such systems, CP/M 2.2 has been
weighed in the scales and found wanting. The only widely accep-
ted replacement for CP/M 2.2 is the ZRDOS family which added
only slight improvements to the basic Digital Research structure.
CP/M 3.0 (also known as CP/M Plus) added some new features,
but was not easily retrofitted to existing systems, and did not
achieve the popularity level of CP/M 2.2.

ZSDOS is our answer to what we perceive as a stagnation for-
ced on the 8-bit computer community by a restrictive suite of
Operating Systems. ZSDOS is a new BDOS replacement written
in the spirit of the popular ZCPR command processor. Its roots
come from P2DOS Version 2.1 by HAJ Ten Brugge of the
Netherlands. P2DOS made significant strides in overcoming some
of the limitations of CP/M 2.2 with such features as larger disk
and file sizes, built-in CP/M Plus compatible file date stamping,
and a Read-Only Path within the DOS for opening files. Use of
attribute bits was expanded to include a modified recognition of
the Plu*Perfect PUBIic bit and support for the Archive bit.

Despite the number of nice features adopted by P2DOS, several
other desirable ones were not included. We and several others in-
cluding Benjamin Ho (SUPRBDOS), C. B. Falconer (DOS + 25),
Carson Wilson (Z80DOS, ZDDOS), have sought to extend the
functions of P2DOS by adding features and fixing bugs.

When BackGrounder ii with its task-swapping and cut and
paste features was released, we found that even the modified
P2DOS derivatives were unusable due to the very tight linkage
needed between Backgrounder ii and the operating system. In in-
dependent contacts with Bridger Mitchell concerning the
possibility of recognizing P2DOS as an ‘‘authorized’’ DOS for
BackGrounder, we finally came to the realization that P2DOS

The Computer Journal / Issue #37

was not stable enough. Seemingly everyone had source code and
was changing it. Additionally, the added features were not much
more beneficial than those offered by the ZRDOS family of
operating systems.

Until Bridger suggested that we pool our resources, each of us
were embarked on different paths. Cameron’s primary thrust was
directed at refining the fundamental P2DOS architecture and ad-
ding compatibility with Plu*Perfect’s tools. Hal concentrated on
correcting bugs, optimizing for speed and building tools to sup-
port the P2DOS (CP/M Plus compatible) file date stamping
method. Carson Wilson joined the group because of his efforts to
embed the entire DateStamper module into Z80DOS. ZSDOS was
born of our decision to join forces and develop a complete DOS.
The result was a pair of compatible DOSes; a full ZSDOS with
complete capabilities, and ZDDOS which sacrifices some features
for the integral DateStamper support.

ZSDOS was designed from the beginning to be compatible with
existing applications. This sounds wonderful in theory but is no
easy trick. To follow accepted standards, they must first be
found, then understood to a degree sufficient to foil Murphy.
Where no standards existed, a great deal of thought was given to
future growth directions for CP/M compatible systems and how
these would affect added functions. The first problem encoun-
tered was that there are no less that three BDOS standards; CP/M
2.2, CP/M 3.0 and ZRDOS. With much of the community using
ZRDOS 1.7, we decided that it would be the final arbitrator of
compatibility from a DOS call perspective. Functions not present
in ZRDOS that resembled CP/M 3.0 functions would be similar
in calling parameters and use the same function numbers. Much
of the effort in ZSDOS involved defining the ‘‘real’’ standards. In
the end, we arrived at what we hope are intelligent additions that
will allow further evolution of CP/M compatible systems rather
than hindering future growth.

In compatibility, ZSDOS rates very highly, though not perfect.
First, ZSDOS requires that the system’s BIOS preserve the IX
register. This may present problems for some Osborne and Bon-
dwell owners. Secondly, ZSDOS forces applications programs to
‘‘play by the rules’’ when dealing with file control blocks. Unlike
CP/M 2.2 and ZRDOS, but like CP/M Plus, ZSDOS does not
create or open new extents until they are really needed. Programs
that attempt to second guess the DOS by looking at the record
count field of the FCB and opening their own extents can get into
trouble due to the 80H value present after the last record in the ex-
tent is read or written. In over a year of extensive testing with
hundreds of CP/M and Z System applications, only two such
programs were found; TDL’s linker and MicroPro’s ReportStar
1.1. In defense of ZSDOS, neither of these programs will run un-
der CP/M Plus either.

When anything is altered within a DOS, there is a good chance
of introducing more bugs than features. In applications
programs, bugs are normally an annoyance. In a DOS they are a
disaster (witness version X.0 of any Microsoft DOS if you doubt
this assertion). DOS calls, therefore, must work as advertised,
and any side effects of the calls must be properly documented.

39

The DOS features should also be logically consistent. One of the
problems with P2DOS is that it attempted to alter long-standing
conventions pioneered by Digital Research and Plu*Perfect
Systems. While there were good arguments in favor of the con-
ventions used in P2DOS, they are inconsistent with what we
viewed as a cohesive set of DOS standards.

Several key philosophical concepts forming the basis for
ZSDOS have already been mentioned-—compatibility with
existing systems and enhancements that make sense. The overall
goal of ZSDOS is that the DOS must not ‘‘get in the way”’ of a
user unless absolutely necessary. By getting in the way we mean
that the DOS does not respond in the desired manner, or prevents
seemingly logical actions from being properly executed. Any time
a command file (e.g. editor, assembler, etc.) is executed from one
drive/ user area and not another, DOS prevents it by getting in

.the way. When DOS requires a user to tell it that a disk has been

changed, DOS is getting in the way. When a user can’t tell which

- file is the latest version, DOS is getting in the way.

The second guiding concept in ZSDOS is that the operating
system is a tool. To this end, ZSDOS has a multitude of options
never before available to the user. These options can be con-
figured on the fly from the command line, command scripts, or
interactively. In all cases, ZSDOS responds instantly to these
changes.

The following sections provide details on changes that ZSDOS
brings to the user of 8-bit computer systems. Unless explicitly
stated, references to ZSDOS also include ZDDOS. The topics
assume a passing familiarity with CP/M 2.2 and ZRDOS.

Automatic Relog of Changed Disks

One of the first areas tackled in the development was automatic
accommodation of changed disks. Benjamin Ho was one of the
first to attempt a fix to P2DOS in his SUPRBDOS which im-
plemented a changed disk detection method consisting of a flag
which was set when the directory checksum of a disk didn’t match
the previous value. Relogging was then performed at a later time.
This approach has been used in several systems (Z80DOS,
SUPRBDOS, and P2DOS +) and seems to work as intended.
Cameron had a problem with this method—the DOS relinquishes
control without the problem being corrected. This put the DOS in

- an invalid state, and breaks a guiding principle of real-time con-

trol systems—NEVER leave the system in an undefined or invalid
state!

ZSDOS uses a more difficult approach that relogs disks at once
when a change is detected. After slogging through the existing
code, it became apparent why no one else has succeeded in finding
a better method—the control flow is very difficult to follow, and
it is nearly impossible to retrace the code, relog, then pick up
where the change was detected. Cameron, having accomplished
‘“‘impossible’’ programming tasks before, once again displayed
his stubborn streak and succeeded in correcting this flaw by using
a tool normally reserved for high-level language programmers:
recursion. This code was one of the first major modifications to
P2DOS and has now been running successfully for nearly two
years.

While developing ZSDOS, our original goal was to give users a
warning that a changed disk had been detected onmly if ZSDOS
was ready to write to an already opened file. It turns out that
many programs successfully open more files than they close.
Thus, counting opens and closes was not a viable solution.
ZSDOS would have to track every FCB used by user programs in
order to stand a fighting chance of sorting out whether or not to
warn. This sloppy coding style seems endemic to the entire Per-
sonal Computer programmer community, and causes severe
problems, particularly in multiuser and multitasking systems.
ZSDOS consequently warns the user every time it detects a disk
change. In the spirit of not ‘‘getting in the way’’, however, the
message can easily be suppressed with the disk being
automatically relogged. A little extra head activity on the drive
will be the only noticeable effect.

40

Time and Date Stamping

Probably the most desired, yet least standardized, DOS feature
is time and date stamping of files. Within the 8-bit CP/M com-
munity there are currently three known methods, all mutually in-
compatible. The closest to a universal standard at this point is
probably Plu*Perfect’s DateStamper® . This is an add-on
time/date stamping system which offers no DOS level functions,
but can be installed on practically any CP/M compatible
machine, with or without a real-time clock. It is also the most
complete stamper available featuring times and dates of file
creation, modification, and last access. DateStamper is well sup-
ported with file copy programs, directory and file utilities, disk
catalog programs, etc. Finally, it consumes only one directory en-
try while the other two stamp methods consume Y% of your
available directory space. On the negative side, it is slower than
the other methods due to the need to open, update, and close the
datestamp file when storing the stamp information.

The other two known methods, P2DOS style (compatible with
CP/M 3.0) and DOS + 25, are very similar. Both use the fourth
entry in each directory sector to hold the time and date infor-
mation for the three file entries in the sector. Right away, one-
fourth of the directory is consumed. While this may not be a
problem for diskettes or hard drives that have 128 or more
possible entries, it is definitely a problem with the 64 entry limit of
systems such as the Kaypro. These two stamp methods are quite
fast and add very little to DOS overhead because the directory en-
try is already in position when stamps are applied. The two
methods differ only in the format of the stamps. The CP/M 3.0
type supports times and dates for Create and Modify only, while
DOS + 25 supports times and dates for Last Access and Modify,
and dates only for Create. A disadvantage is that both of these
schemes require an additional BIOS vector to function.

While ZSDOS can, theoretically, manage nearly any type of
time and date stamp construct, we have only implemented
DateStamper and P2DOS schemes. This versatility is accom-
plished by placing method specific and clock code in BIOS or
other protected memory, and by vectoring all DOS time stamp
functions through a table in the configuration area of ZSDOS. By
inserting addresses of the method specific service routines in this
table, ZSDOS maintains control of program flow, calling stamp
routines as needed. Vectors are currently provided for Get/Set
Time, Get Stamp, Put Stamp, Stamp Create, Stamp Access, and
Stamp Modify. Only the routines needed to support the required
stamp method need be implemented. For example, all six vectors
must be set in a full DateStamper system with ZSDOS, while only
the Get/Set Time is required in the ZDDOS version. All but the
Stamp Last Access vector, which is disabled, are needed in a
P2DOS stamping system.

ZSDOS does most of the required housekeeping in all stamp
related calls to simplify the implementation. When external time
stamp functions are called, ZSDOS has already loaded the direc-
tory buffer with the record containing the required entry. If a
directory write is required, the drive has already been tested for
Read/Write status. ZSDOS passes all necessary information to
the external routines which are responsible for getting the time (if
required), converting the stamp between universal format and
target format, and placing the stamp where it belongs. Only in the
case of stamp last access or put stamp is the BIOS actually
required to call the write directory record routine. The external
routines all return a status code to notify applications/users of the
operation success or failure. When portions of the stamping
scheme have been disabled, or have not been loaded, an error
status is returned from dummy routines addressed by the unim-
plemented vectors in ZSDOS.

To support file stamping in a coherent manner, ZSDOS has
adopted four new function calls. Functions 98 and 99 are Get
Time and Set Time respectively. A six-byte packed BCD construct
is used to pass two-digit year (arbitrarily decided as 1978 to 2077),
month, and day as well as hours, minutes and seconds values.
Functions 102 and 103 are the Get Stamp and Put Stamp calls

The Computer Journal / Issue #37

respectively. Key to the way ZSDOS handles these functions is
that we have defined a format that is independent of the stamping
method and can handle all present, and probably any future
stamping method. Stamps are defined as three fields of five bytes
each. Each field is comprised of packed BCD digits for Year,
Month, Day, Hour and Minute, in the same manner as the Time
returned from the clock, less the Seconds byte. Any conversions
needed between this ‘‘Universal’’ format and the native stamp
format is performed in the external stamping module. Since this is
"the native DateStamper format, ZDDOS operates directly on the
data. We hope that this format will provide a meeting ground for
the diverse methods and provide a badly needed standard ap-
plications interface.

The six byte BCD format was adopted (after considerable
debate) because it simplifies the code for applications that deal
with the stamps. The order of the stamp lends itself readily to sor-
ting by date. The BCD format makes conversion to Ascii display
values a snap. The fact that it is the same format as the de-facto
CP/M 2.2 standard, DateStamper, was also a key factor in the
decision.

Enhanced Error Handling

Error handling in most CP/M compatible operating systems
left much to be desired. CP/M 2.2 has been infamous for cryptic
error messages. While ZRDOS attempted to be somewhat less so,
it required users to look up error numnbers in the manual (or via an
online utility) to decipher the meaning. CP/M 3.0 for the first
time provided truly useful error messages, reporting errors in
something approaching plain English. Feedback includes the type
of error, the function number which triggered the error, the drive
in question, and the name of the file (if one was used). P2DOS
and its derivatives adopted these messages but in P2DOS even
Bad Sector errors which could be ignored under CP/M 2.2,
caused an immediate warm boot. ZSDOS adopts the CP/M 2.2
recovery methodology added in most of the enhanced versions of
P2DOS and continues the concept of plain English error
messages.

CP/M 3.0 also has a another very desirable feature which was
never incorporated in CP/M 2.2 compatible BDOSes. With a new
function 485, all errors can be returned to the application program
including Select errors and Read Only errors. In this mode, errors
return a unique code revealing the exact cause. Applications can
even tell CP/M 3.0 to suppress all DOS error messages. This
seemed to be a highly desirable feature, so we added it to ZSDOS.

ZSDOS also reverts to strict CP/M compatibility in another
obscure area, not following the path taken by ZRDOS. ZSDOS
maintains a vector table for errors in the same location used by
CP/M 2.2. This allows the few programs that patch the table,
such as bad sector lockout programs, to operate properly.

Function 37 Fixed

Probably the most troublesome of all functions provided by
CP/M 2.2 was function 37. Many wrongly assumed that function
37 would relog a selected disk after performing the stated fun-
ction of resetting (unlogging) all disks. It didn’t! This anomaly
caused many blasted disks and infuriated users. In accordance
with the ZSDOS spirit, it seemed reasonable that if the default
drive was logged out, it should be automatically relogged after a
function 37 call. This is now the case with ZSDOS.

Global Availability of Files

One of the most frustrating aspects of most microcomputer
operating systems is context sensitivity. The classic model for
computer operating system file management—that of the or-
dinary filing cabinet—neglects one very important point. The
phone, the pencils and pens, and the myriad of other tools found
on most desks are not kept in the filing cabinet! Yet, on a vast
majority of our file management systems they are. Clearly, some
distinction should be made between tools and data if the

The Computer Journal / Issue #37

operation of the system is to approach the intuitive level. One
should be able to log into an area where data resides and have all
the system tools available— without the need to either remember
where they are or inform each and every application where it lives.

The ZCPR family of Console Command Processor
replacements made tremendous strides in freeing user dependence
on strict drive and user area specification by creating a Search
Path that the Command Processor uses to find Command files.
Users were thereby able to use files spread across the computer’s
complement of drives with the privacy of user areas by specifying
a Path consisting of a list of drive and user numbers. Unfor-
tunately, the Path became inactive once command programs
began executing unless the application program is specifically
written to locate and use the Path, Programs using overlays (in-
cluding most of the programs for which we bought computers in
the first place) printed nasty messages about missing overlays and
dumped us unceremoniously back to the Command Processor
when we relied on Path access. Thus, Path alone wasn’t the an-
swer to context sensitivity.

In 1984, Bridger Mitchell and Derek McKay of Plu*Perfect
systems published the PUBIic patch for CP/M in Dr Dobb’s
Journal. With this patch, any file having the F2 bit (most
significant bit of the second character of the file name) set could
be accessed from any user area on the disk from BDOS, provided
that it was specified with an unambiguous name. This solved the
overlay problem when logged on the same disk as the overlays. It
was also fast with only one scan of the directory required to locate
the file! However, PUBIic files disappeared from the direc-
tory—at least according to directory utilities that didn’t know
how to look for them. Thus PUBIic was a major step forward but
again was not the total solution.

P2DOS was the first real attempt at a coherent solution. Path
was implemented, along with a modified form of PUBIic from
within the BDOS. By setting F2, a file was made Public, just as
with the CP/M patch. By setting the system bit, Path was allowed
to find the file. Thus, the user had complete control over the
method of accessing files. Both Public and Path accesses were
read only, and Path only worked for file opens. Public files even
appeared in directories! Both limitations were reasonable, but
there were bugs. The DOS routine that checked for file read only
status had several serious bugs that prevented erasure of files
when it should have been allowed by the Plu*Perfect definition.
Also, due to the way the erase routine was implemented, erased
Public files continued to be found on directory scans! Third,
strange file R/O errors would randomly occur if the last file in a
directory was declared Public. Finally, if ZCPR’s Path was used,
the entire Path would be walked N2 times if the file was not
found!

ZRDOS attempted a different solution by providing a
mechanism for declaring complete directories Public. A map is
maintained of disks containing Public directories and user num-
bers declared Public. This arrangement is best visualized as a grid,
with user numbers on one axis and directories on the other.
Wherever the Public declarations for drive and user intersect on
the grid, all files in the associated directory are Public. As with
Plu*Perfect PUBIic, all Public files disappear from directory
listings. Since this means everything in the directory, entire direc-
tories appear empty! Since access is R/W, accidental erasure or
overwriting of files can be a real problem. From a performance
aspect, it appears that one disk directory scan is required for each
user area declared Public. Thus, considerable time overhead may
be required in finding Public files if more than one user area is
declared Public. The fact that a PUBIic patch for ZRDOS has
been developed bespeaks the fact that ZRDOS hasn’t found the
magic combination either.

Our approach in ZSDOS was to build on P2DOS’s framework
and remove the idiosyncrasies and bugs. The P2DOS approach
had several very strong points. The access mode of the files was
totally under the control of the user on a per file basis (unlike the

41

per directory basis of ZRDOS), with only one directory scan per
drive required, and P2DOS used two de-facto standard struc-
tures: Path and PUBIic. After many gyrations, we finally settled
on the “‘best”’ definitions for Public and Path. For a start, we
allow run-time configuration of the ZSDOS access modes—of
which there are five in ZSDOS and two in ZDDOS (Path being
sacrificed for the integral DateStamper)! Though these five
modes are somewhat contrived, they serve to provide a way of
understanding the options offered by ZSDOS which may be set
" on installation and altered on line at any time.

The first access mode is the default mode. This is the way a
standard CP/M 2.2 system accesses files. If the file is not found in
the logged drive/user area, an error is returned. No other attem-
pts are made to find the file. ZSDOS always tries this access mode
first regardless of the access options enabled. This prevents files
‘or entire directories from ‘‘disappearing’’ on the unsuspecting

. user. Wildcard file specifications are only allowed for this mode,
not for any other.

The second mode is the Path Directory Access mode featured
only in the full ZSDOS. A search Path (which may be a ZCPR3
Path), an internal three element Path or a user defined Path is
scanned to find the file. In this mode, all files in any directory
along the Path may be located by using an unambiguous file
name. This mode is similar to the ZRDOS Public mode.

The third access mode is the Path File Access mode, again only
contained in the full ZSDOS. As in the Path Directory mode, the
DOS Path is used to search for files. This mode, however,
requires that the SYStem attribute bit be set for the file to be
found. In the Path File Access mode, the user has more control
over how particular files will be accessed. Entire directories need
not be made globally available, just those files with the SYStem
attribute bit set.

The fourth method is the Public access mode featured in both
the ZSDOS and ZDDOS versions. This mode follows the
Plu*Perfect PUBIic definition and requires the F2 attribute to be
set to find the file. Unlike the original Plu*Perfect patch to CP/M
2.2, Public files are “*visible”” if you are logged into the same drive
and user area as the file. The Public Access mode is very efficient
for finding unambiguously specified files, correctly locating them

_on the first disk directory scan. One precaution to be observed
with Public, however, is that only one file of the same name is
permitted for any given disk. ZSDOS comes with appropriate
support tools to enforce this rule.

The fifth method is called the Combined Access mode. As in
the other modes requiring a Path, it exists only in the ZSDOS ver-
sion. Rather than being a distinct mode, it is selected by
simultaneously setting options so that either Public or Path can
access files. ZSDOS first uses Path to select a drive, then locates
Public files on that disk in the first directory scan, regardless of
the user area indicated in the Path. File access time is thereby
significantly reduced for systems where files are spread over
several drives and user areas.

One of the thorny questions we had to deal with was whether to
restrict access of Public and Path files to read only. The original
Plu*Perfect definition of PUBIic allowed writes, while P2DOS
did not. After many discussions with Bridger Mitchell and others,
we decided to allow read/write access to both Path and Public
files, but we didn’t stop there. Many users are understandably
wary of the accidental file erasure or overwriting possible with
both Path and Public. To accommodate these users (we number
ourselves among them), ZSDOS allows user selection between
Read/Write and Read Only file accesses. As with most ZSDOS
features, this selection can be set or changed at any time. The
restriction to Read Only does not affect access to files in the
currently logged drive/user area.

Path access is necessarily restricted to the Open File function in
order to prevent global chaos. Once successfully opened, the file
will always be found again if the application doesn’t alter FCB +0
and FCB + 13. Actually implementing a Writable Path turned out

42

to be one of the biggest compatibility problems we faced in the
design of ZSDOS, and it was one of the last major features to be
added. Formally defining a use for the byte at FCB + 13 marks a
departure from the accepted definitions of ‘‘undefined’’ and
“‘reserved’’ in previous DOSes, but provides an upward com-
patibility with new system components such as ZCPR Version 3.3
and later. Also, providing the user with access to the F7 attribute
bit to determine whether files were found by Path and/or Public
is another deliberate step in providing software developers with
additional tools to write responsive programs.

User Number Storage in the FCB

In making the Path Writable, we had to break new ground with
ZSDOS. While most ZSDOS features are refinements of existing
ideas from other DOSses, the concept of user number storage in
the FCB is borrowed from ZCPR Version 3 and is new for a DOS.
As explained above, Path is only active in ZSDOS on file Opens,
and only resolves the drive containing the file. Unless the Public
bit on the file is set or we are logged in the right user area, sub-
sequent accesses to the file will fail. Our answer to this dilemma is
to have ZSDOS keep track of the user area in which the file was
found using a trick from ZCPR3.

Version 3.0 of ZCPR began to use the previously ‘‘reserved’’
byte at FCB + 13 to store the user number of files several years
ago. This byte, known as S1 in CP/M 2.2 and ZRDOS, was listed
as “‘reserved’’ but unused until ZCPR began using it when par-
sing file specifications. ZSDOS also uses this byte to store the user
number for the file. Simple? Far from it! Problem #1—how do
you distinguish between a valid user 0 and an FCB from an ap-
plication that knows nothing of users and sets this byte to zero
because the Digital Research documentation said to? The answer
is fairly simple; use a bit as a user valid flag since only 5 bits are
required to hold user numbers. Just check this bit. If it’s clear,
DOS has only to place the current user at this location, set the bit
and the problems go away . . right? If only life were this easy!

There is a little known corollary to Murphy’s law which states
that Murphy is an optimist! We can attest to its validity after
solving this problem. Digital Research did not specify that the S1
byte should be initialized prior to file opens. Consequently, many
programs reuse FCB’s without bothering to clear the S1 byte.
When these recycled FCB’s are used to call ZSDOS, the (usually
wrong) user number is already resolved in the FCB!

After much head scratching and experimentation, only one
method provided the necessary backward compatibility. The user
number in S1 is ignored on file opens UNLESS an application ex-
plicitly says that it knows about user numbers, and wants to work
with them. We call these ZSDOS application programs, and they
signal their presence by setting the BDOS error mode before
executing file access commands. Pseudo code for this modified
operation is:

SELECT DRIVE FROM FCB:
IF there's a ''?'' in FCB+@
GOTO function 14 (FCB+13 not altered or examined)
ELSE
SELECT drive from FCB
IF D7 of FCB+13 is clear
Get default user
OR with 80H
Place in FCB+13
ENDIF
GET FCB+13
AND with 7FH
Store in FCB+@ for SEARCH
ENDIF

SEARCH: (does not use FCB+13 - user is in FCB+® at this point)
IF file not found AND it's NOT open a new write extent
Clear bit 7 of FCB+13
ENDIF

The Computer Journal/ Issue #37

So long as an application doesn’t fiddle with FCB+0 to
FCB + 13, after a file open, this method works very well. For ap-
plications that do, logging in where your data is and using explicit
DU: specifications to grab data from other drive user areas (just
like you’ve been doing all along) will make even these perform
correctly. A shining example of a program that is ill-behaved in
this manner is MLOAD.

Note that the access modes in ZSDOS are primarily designed to
load applications and overlays—not find data files. By now, the
reasons for this design should be clear. While there is nothing in
the design of Path and Public as implemented in ZSDOS to
prevent fetching data, our primary concerns were in backwards
compatibility with programs that insist on altering FCB’s once
files have been opened.

Fast Relog of Hard Disks

- Another enhancement provided by ZSDOS is fast relog of fixed
disks. This again is simple in concept, but if all potential problems
with relog are considered, things get more complex. In a normal
CP/M system, every time a disk is reset, DOS clears its bit map
showing what blocks on the disk are allocated. When the disk is
logged in, the allocation vector is rebuilt by scanning the entire
directory. This takes time, particularly on large hard disks that
have 1,024 or more directory entries. When a non-removable
media drive such as a hard disk is present, the allocations do not
change. Therefore, clearing the allocation vectors and scanning
the directory can be avoided after the initial selection.

DOS has all the information it needs to determine whether a
disk contains removable media or not. The disk parameter header
returned to DOS after a BIOS select contains a pointer to a scrat-
chpad area known as the Work Area for Changed Diskettes
(WACD). Each disk with removable media must have a WACD.
If this pointer contains 0, the drive by definition contains non-
removable media. So far, so good. All DOS has to do is build a
vector defining which drives in the system are fixed disks and
avoid relogging those drives.

Now for another Murphyism. First, it is not always true that
allocations won’t change without DOS’s knowledge. Any time the
BIOS is directly manipulated, it can change disk allocations
without giving DOS a clue. Examples of programs that do this are
PACK, PUTDS, and PUTBG. Clearly, a method of signaling
DOS to rebuild the drive allocation is required. Fortunately, ZR-
DOS (starting with V1.5) defined such a method. When a drive is
logged out using function 37, the hard disk login vector is also
cleared for that drive, forcing the allocation vector to be rebuilt.

Now for the worst problem with the fast relog. Some BIOSes
such as the Advent TURBOROM BIOS for Kaypro and the AM-
PRO BIOS support remapping of logical drives. For example,
assume that at boot time, disks A through D are floppies and F
through I are hard disks. On one of the BIOSes mentioned above,
you could tell the BIOS to swap drives so that A through D are the
hard disk and F through I are floppies. Since this is a BIOS fun-
ction, DOS has no idea what has happened behind its back. If
BIOS swap programs would reset these drives with a function 37
call, all would be well. Unfortunately, they don’t.

Now the compatibility issue raises its head again. We can’t ex-
pect all the swap utilities to be rewritten or patched, nor do we
want to depend on the user invoking custom programs such as
RELOG or DSKRST. If drives can be swapped, DOS needs some
method of discovering this and coping with it once discovered.
The method chosen, while not perfect, provides protection in all
but one rather unusual case. Since DOS knows that a WACD
pointer can tell which drives are fixed and which are not, this in-
formation is combined with the state of the hard disk login vector
to tell if BIOS has played games behind our back. Pseudo code
for this procedure is:

The Computer Journal / Issue #37

IF WACD indicates hard disk
IF it's already logged in as a hard disk
EXIT
ELSE
Log in as hard disk and build allocation
ENDIF
ELSE it's removable so
IF it was logged as a hard disk before
Clear all hard disk allocations
ENDIF
Build allocation vector
ENDIF

Those who looked over this carefully have probably discovered
the one problem ZSDOS can’t detect; the case of two hard disks
being swapped. In all of our head scratching, we couldn’t think of
a simple, reliable method of doing this (if you know of one, let us
know!). However, this is a rare situation and ample warning is
given in the ZSDOS documentation. To be compatible with ZR-
DOS function conventions, the hard disk login vector can be
examined using function 39.

Run Time Configuration

The FLAGS byte originated in P2DOS has been extended in
ZSDOS to allow more complete user control over the DOS.
Currently, bits in the FLAGS variable control whether Path and
Public are enabled, what Public mode is selected, whether the
Fast Fixed Disk Relog is used, and whether the disk write protect
buffer is flushed by a warm boot. In addition to setting default
conditions for these parameters during installation, they can be
dynamically altered with a supplied utility, or by applications
programs using the new functions 100 and 101. These two fun-
ctions Get and Set the FLAGS respectively in a standard and
published way. While FLAGS is currently a BYTE value, it is
defined and passed as a 16-bit WORD value with the upper byte
set to zero. Future expansion is thereby accommodated with
minimum changes to defined parameters. There should be no
more need to use undocumented patches so commonly found
with CP/M 2.2 and ZRDOS.

Expanded Attribute Support

Attribute bits are the Most Significant Bits in the name and
type of files used in file specifications. They are denoted by *F’’
for file name, and ““T”’ for file type, and a number for the specific
byte in the field. Where CP/M recognized only two attribute bits,
ZSDOS supports six of the possible eight. The Read Only (T1)
and SYStem (T2) bits are retained with their original definitions.
The popular Archive bit (T3) is supported as well. The Archive bit
is automatically cleared by DOS when files are created and written
to, and set by many file utilities such as ARCHIVE and BU. At-
tribute F2 is used to identify Public files in accordance with the
Plu*Perfect standard covered above. Additionally, attribute F3 is
used with the DateStamper file stamp method to tell ZSDOS not
to update the Last Accessed time field. Finally, attribute F8 is
used to show that the file is restricted to users with Wheel access
privileges.

Enhanced Write Protection

Protection against inadvertent writes has been increased in both
areas of disk and file. Function 28 may be used to declare an en-
tire disk as Read Only. In both CP/M and ZRDOS, this status
reverts to Read/Write on a Warm Boot. Under ZSDOS, an op-
tion exists to declare the Read Only vector as permanent. In this
mode, Read-Only Sustain, only reloading the DOS (or turning off
the R/0 sustain bit in FLAGS, then warm booting) will restore
the drive to Read/Write status.

File write protection has also been strengthened by methods
related to the added ZSDOS features as well as retaining the old
Read Only attribute (T1) bit. Prohibiting writes to Path and

43

Public files is another method previously described. The final
method to protect files is by using another concept from ZCPR,
the Wheel Byte. We added a vector to the configuration area of
ZSDOS which may be set to any arbitrary address, including a
ZCPR Wheel Byte to control file writes. ZSDOS follows the same
conventions as ZCPR where a null (zero) value in the Wheel byte
means that the user is not a “Wheel’’ and cannot perform certain
privileged activities, including erasing or writing to files marked
with the Wheel Attribute (F8) bit. Disabling the Wheel protect
- feature of ZSDOS has the effect of granting full access to the user
by setting the vector to a non-zero value.

Revised Console 1/0

CP/M originated at a time when the Teletype Model 33 was a
mainstay console for computers. The vast majority of terminals
-are now video based, and do not need the teletype editing sequen-

_ces. We therefore decided to follow the lead of ZRDOS and many
P2DOS hackers, and change the interface. Thus, ZSDOS no
longer supports Control-E. The Rubout (7FH) and Backspace
(08H) characters are both treated as destructive backspaces in
function 10, Read Console Buffer. This was done in a way that
does not require patching of such programs as WordStar. For the
benefit of bulletin board operators, Control-U is synonymous
with Control-X since the latter is a special character in many
protocols. Also for remote operators, Control-R (retype line) has
been retained in the full ZSDOS. ZDDOS sacrifices this feature to
provide space for the embedded DateStamper.

Function 6, Direct Console 1/0, was also enhanced with the
addition of a Get Console Character function. This operates as
function 1 except that no character checking (such as Control-C
Warm Boot trapping) is performed. The code was also revised to
use a one character type-ahead buffer in a manner that permits
free mixing of function 1 and 6 calls in a totally reliable manner.

Other Features and Tradeoffs

In addition to the features already mentioned, ZSDOS supports
the ZRDOS return DMA pointer function (function 47), and a
ZSDOS return version call (function 48) which is a logical exten-
sion of the ZRDOS call. ZSDOS is also compatible with the reen-

trancy requirements of ZRDOS 1.7 for rudimentary multi-tasking
support such as that required in some Input-Output Packages for
ZCPR 3.

ZSDOS features larger disk and file sizes by logically and tran-
sparently extending the original CP/M constructs. Files may now
be as large as 32 Megabytes with random access files consisting of
as many as 262,144 logical records. Disks may contain 1,048,576
kilobytes, or one gigabyte!

True to the original goals, ZSDOS is fully compatible with the
current suite of advanced tools such as BackGrounder ii. While
an overlay is provided for existing versions, newer revisions will
automatically recognize ZSDOS and permit direct loading. We
also concentrated on providing a complete repertoire of support
tools and utilities to take control of the various features. In-
stallation tools and procedures are provided for overlaying
ZSDOS onto a MOVCPM image, installing ZSDOS with NZ-
COM, XBIOS, and Plu*Perfect’s JetLDR. Tools are provided
for: Directory listing of files with date stamps added by
DateStamper, P2DOS, and DosDisk; file copying and archiving
with date stamp preservation; Path manipulation; and run-time
tailoring of all ZSDOS options. Additionally, the full set of over
40 clocks recognized in the Plu*Perfect library (as well as new
drivers for the Ampro Little Board, several SB180 clocks, and the
Oneac ON!) are supported with easy-to-use interactive in-
stallation tools.

Now, how did we get all this into a DOS that originally had
only 7 bytes left? Needless to say, nearly every trick in the book
was used (and some we have NEVER seen in any book!). This
gave us some room, though much of the effort was still slogging
line by line through the code in tedious manual optimization.
Both of us are somewhat proficient in code crunching (Hal having
done a thesis on optimizing compilers and Cameron having used
Z780’s for a number of years in real time control systems). It took
the best efforts of both of us to chop things down to size. What
we missed, Bridger Mitchell, Joe Wright, and Carson Wilson
found in their review of the code—but it wasn’t much. Some
details of this effort will be covered in the next part of this article
along with some performance results and code fragments to show
how to use the advanced capabilities of ZSDOS. B

. Editor

(Continued from page 3)
dealers may have to become vertical

market VARs (Value Added Reseller) and
consulting houses which only deal with
the customers who are intelligent enough
to value (and pay for) their services.

What are your experiences and opinions
on this?

What is CAD?

The term CAD is currently being used
for at least three functions which are
similar but different. They are Computer
Aided Drafting, Drawing, and Design.
Software which is best for one of these
functions will perform the other two fun-
ctions poorly, if at all. Some publications
have directly compared drafting programs
with design programs in a design ap-
plication which made the drafting
program look bad. This is like trying to
use a pipe wrench and a socket wrench for
the same job. It is wrong because they are
different tools designed for different ap-
plications.

An upcoming article will contrast the
three functions with an example of a sof-
tware package for each function. n

44

NS32 Public Domain Software Disks

This is the start of our public domain user disk library
for the National Semiconductor NS320XX series. Your
contributions are needed to make this library grow.

Most disks are available on MS-DOS format 5.25 360K
or 1.2M, or 3.5 720K, but some are only available in a high
density format because of the file size. These excep-
tions are noted in the catalog listing.

The price is $12 per disk postpaid in the U.S.A. and
Canada, or $14 per disk in other countries. Funds must
be in American doliars on a U.S. bank, charge cards are
acceptable.

NS32 public domain software disk #1
232 Cross Assembler for NS32 by Neil R. Koozer

This cross assembler runs under CP/M. It will run un-
der MS-/PC-DOS by using the Z80MU package or any
other Z-80, CP/M emulator. This disk contains 352K in 18
tiles.

Z32 is a one-pass assembler. It has a somewhat
unusual syntax, but assembles very quickly, even under
the emulator.

NS32 public domain disk #2
A32 assembler for NS32 by Richard Rodman

Originally described in Dr. Dobb’s Journal, 12/86. This
disk contains 120K in 19 files.

NS32 public domain disk #5
SRM—Simpie ROM Monitor for NS32
by Richard Rodman
Version 0.7

This is a simple ROM monitor which allows for
memory display and change as well as downloading. it
will fit easily in two 2716 EPROMSs. it assembles with
Z232. The two CHRxxx.A32 files are /O routines. Edit
SRM.A32 to include the appropriate one. This disk con-
tains 181K in 17 files.

The CompuPro System Support 1 driver routines were
written by Mike Prezbindowski.

NS32 public domain disk #9
C16 C compiler for NS32— Copyright 1987
by Philip Prendeville

This is a full K&R C compiler. It is NOT public domain
but is released for unlimited free distribution for non-
commercial use only.

it is being furnished on a 1.2M AT-style diskette with
the DECUS C preprocessor. This disk contains 690K in
46 files. Inquire if you can not read the 1.2M AT format.

The DECUS C Preprocessor is from the DECUS sof-
tware library and is furnished as-is. It seems to work
well. Don’t worry about any of the “model” switches.
The NS32 is an advanced processor that doesn’t need
any of that “memory model” garbage.

Use TCJ Order Form

The Computer Journal/ Issue #37

Issue Number 18:

* Parallel Interface for Apple 1 Game Port
e The Hacker's MAC: A Letter from Lee
Feisenstein

e S-100 Graphics Screen Dump
* The LS-100 Disk Simulator Kit
¢ BASE: Part Six

* [nterfacing Tips & Troubles: Com-
municating with Telephone Tone Control,
Part 1

Issue Number 19:

¢ Using The Extensibility of Forth

* Extended CBIOS

* A $500 Superbrain Computer

« BASE: Part Seven

¢ interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,

* Part2

* Multitasking and Windows with CP/M: A

Review of MTBASIC

issue Number 20:

¢ Designing an 8035 SBC

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

¢ Soidering and Other Strange Tales

* Build a $-100 Floppy Disk Controller:
WD2797 Controiler for CP/M 68K

issue Number 21:

* Extending Turbo Pascal: Customize with
Procedures and Functions

* Unsoldering: The Arcane Art

* Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World

* Programming the 8035 SBC

Issue Number 22:

* NEW.DOS: Write Your Own Operating
System

¢ Variability in the BDS C Standard Library
* The SCSI Interface: Introductory
Column

* Using Turbo Pascal ISAM Files

* The AMPRO Little Board Column

Issue Number 23:

e C Column: Flow Control & Program
Structure

¢ The Z Column: Getting Started with
Directories & User Areas

* The SCSl Interface: introduction to SCSI
* NEW-DOS: The Console Command
Processor

* Editing The CP/M Operating System

* INDEXER: Turbo Pascal Program to
Create Index

* The AMPRO Little Board Column

Issue Number 24:

* Selecting and Building a System

* The SCSI Interface: SCS! Command
Protocol

¢ Introduction to Assembly Code for CP/M
* The C Column: Software Text Filters

* AMPRO 186 Column: Installing MS-DOS
Software

* The Z Column

* NEW-DOS: The CCP Internal Commands
e ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Little Board

Issue Number 25:

* Repairing & Modifying Printed Circuits
* Z-Com vs Hacker Version of Z-System

* Exploring Single Linked Listsin C

¢ Adding Serial Port to Ampro L.B.

* Building a SCSi Adapter

* New-Dos: CCP Internal Commands

* Ampro '186 Networking with SuperDUO
* ZSiG Column

Issue Number 26:

* Bus Systems: Selecting a System Bus

* Using the SB180 Real Time Clock

* The SCSI Interface: Software for the
SCSI Adapter

* Inside AMPRO Computers

e NEW-DOS: The CCP Commands Con-
tinued

* ZSIG Corner

¢ Affordable C Compilers

* Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

* 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z-80 Software

* Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

* The C Column: A Graphics Primitive
Package

* The Hitachi HD64180: New Life for 8-bit
Systems

¢ ZS|G Corner: Command Line Generators
and Aliases

s A Tutor Program for Forth: Writing a For-
th Tutor in Forth

The Computer Journal / Issue #37

THE COMPUTER JOURNAL

Back Issues

¢ Disk Parameters: Modifying The CPIM
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

* Starting your Own BBS

s Build an A/D Converter for the Ampro
L.B.» HD64180: Setting the wait states &
RAM refresh, using PRT & DMA

* Using SCSI for Real Time Contro!

* Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascatl

¢ Choosing a Language for Machine Con-
trol

Issue Number 29:

* Better Software Filter Design

* MDISK: Adding a 1 Meg RAM disk to
Ampro L.B,, part one.

* Using the Hitachi HD64180: Embedded
processor design.

* 68000: Why use a new OS and the 680007
¢ Detecting the 8087 Math Chip

* Floppy Disk Track Structure

* The ZCPR3 Corner

Issue Number 30:

* Doubie Density Floppy Controller

* ZCPR3IOP for the Ampro L.B.

* 3200 Hacker’s Language

¢ MDISK: 1 Meg RAM disk for Ampro LB,
part2

* Non-Preemptive Multitasking

¢ Software Timers for the 68000

¢ Lilliput Z-Node

¢ The ZCPR3 Corner

* The CP/M Corner

Issue Number 31:

* Using SCSI for Generalized /O

* Communicating with Floppy Disks: Disk
parameters and their variations.

* XBIOS: A replacement BIOS for the
SB180.

* K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system
program.

¢ The ZCPR3 Corner: ARUNZ documen-
tation.

Issue Number 32:

* Language Development: Automatic
generation of parsers for interactive
systems.

¢ Designing Operating Systems: A ROM
based O.S. for the Z81.

* Advanced CP/M: Boosting Performance.
* Systematic Elimination of MS-DOS
Files: Part 1, Deieting root directories & an
in-depth look at the FCB.

e WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCHI terminal
based systems.

¢ K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.

* The ZCPR3 Corner: NZCOM and ZC-
PR34.

Issue Number 33:

* Data File Conversion: Writing a filter to
convert foreign file formats.

* Advanced CP/M: ZCPR3PLUS, and how
to write self relocating 280 code.

¢ DataBase: The first in a series on data
bases and information processing.

* SCSI for the S-100 Bus: Another example
of SCSi's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a Z80 system.

* Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

e ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

Issue Number 34:

* Developing a File Encryption System:
Scramble data with your customized en-
cryption/password system.

* DataBase: A continuation of the
database primer series.

* A Simple Multitasking
Designing an embedded
multitasking system.

* ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

¢ Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM2.2.

* Macintosh Data File Conversion in Tur-
bo Pascal.

1ssue Number 35:

Executive:
controlier

* All This & Modula-2: A Pascal-like alter-
native with scope and parameter passing.

e A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiabie assem. souce code.
* Reat Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Intel and Motorola CPUs.
* $-100 Eprom Burner: a project for S-100
hardware hackers.

* Advanced CP/M: An up-to-date DOS,
plus details on file structure and formats.

» REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

¢ ZCPR3 Corner: How shells work,
cracking code, and remaking WordStar 4.0.

Issue Number 36:

¢ Information Engineering: introduction

* Modula-2: A list of reference books

* Temperature Measurement & Control:
Agricultural computer application

* ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFiLEl
¢ Real Computing: N§32032 hardware for
experimenter, CPU’s in series, software
options

* SPRINT: A review

* ZCPR3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

¢ Advanced CP/M:
programming

Environmental

45

Issue Number 1:
» RS-232 Interface Part One
¢ Telecomputing with the Apple I1
« Beginner’s Column: Getting Started
¢ Buildan “Epram”

Issue Number 2:

* File Transfer Programs for CP/M

o RS-232 Interface Part Two

o Build Hardware Print Spooler: Part 1

+ Review of Floppy Disk Formats

» Sending Morse Code with an Apple II

e Beginner’s Column: Basic Concepts
and Formulas

—Issue Number3:
¢ Add an 8087 Math Chip to Your Dual

Processor Board

;I Build an A/D Converter for the Apple
¢ Modems for Micros

¢ The CP/M Operating System

¢ Build Hardware Print Spooler: Part 2

Issue Number 4:

e Optronics, Part 1: Detecting,
Generating, and Using Light in Elec-
tronics

e Multi-User: An Introduction

+ Making the CP/M User Function More
Useful

¢ Build Hardware Print Spooler: Part 3

¢ Beginner’s Column: Power Supply
Design

Issue Number 6:

» Build High Resolution S-100 Graphics
Board: Part1

 System Integration, Part 1: Selecting
System Components

 Optronics, Part 3: Fiber Optics

¢ Controlling DC Motors

¢ Multi-User: Local Area Networks

¢ DC Motor Applications

Issue Number §:
¢ Build VIC-20 EPROM Programmer

¢ Multi-User: CP/Net

» Build High Resolution S-100 Graphics
Board: Part 3

+ System Integration, Part3: CP/M 3.0

» Linear Optimization with Micros

Issue Number 16:

» Debugging 8087 Code

¢ Using the Apple Game Port

e BASE: Part Four

¢ Using the S-100 Bus and the 68008 CPU
¢ Interfacing Tips & Troubles: Build a
“Jellybean’’ Logic-to-RS232 Converter

Issues—1,2,3,4,6,8, and 16
3 or more, $1.50 each postpaid in the U.S.
Outside of the U.S., 3 or more, $2.50 each postpaid surface.

Other back issues are available at the regular price.

Subscriptions U.S. Canada Surface Total
Foreign
6 issues per year
0O New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00

Back Issye§ —————— ——— - - — — —— $3.50 ea $3.50 ea. $4.75ea.

Sixormore ——————— — ———— $3.00 ea $3.00 ea $4.25ea.

#'s
All funds must be in U.S. dollars on a U.S. bank. Total Enclosed
0 Check enclosed O VISA [0 MasterCard Card#
Expiration date Signature
Name
Address
City State ZIP
37 190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

Computer Corner

(Continued from page 48)

only employment section. It is a good way
to get Forth help faster than the mail or
magazines.

Lastly is go to a Forth Convention,
there is always a lot to learn there (more
later on the latest meeting). Let’s not
forget local Forth interest groups. Our
group in Sacramento is small but friendly
and very helpful. Well worth the once a
month we meet and discuss events. It is in
these meeting where you find out which
devices are best and who has what sof-
tware to solve the problems.

" Again, thank you for your letter and
keep us informed of your experiences with
Forth.

The Forth Real Time Convention

This year the Forth community held its
convention in Los Angeles. The main
theme was Real Time use of Forth, as well
as Real Time activities in general. I was
unable to go, but have talked with one of
the other Forth members to get his
opinion of the affair, My main interest
was who won the real time contest. There
was a $1,000 prize for the first person or
group that could make their computer
talk to and control a GIZMO. The actual
gizmo was kept a secret so nobody could
do any preplanning.

The gizmo turned out to be a type of
metronome. A solenoid controlled the
swing of a hack saw blade, while a LED
display could scroll out the text you would
sing along with. There were 4 teams and 6
individuals trying to win. Each had their
own unit and the winners (a team of two)
took 110 minutes to make it work. It was
done in Forth on an Amiga (any language
could be used), and my friend said it was
quite exciting watching people as they got
more and more functions to work.

Seminar Reports

A number of topics were discussed in
the seminars and one item that is currently
hot is multi-tasking. The current issue is
that most want to do pre-emptive and not
task switching. The difference as I under-
stand it, requires a major change in how
the kernel is actually put together. A
rather large number of Forth main
features must be given up to use pre-
emptive multi-tasking. My feelings and
those of others are based on why you use
Forth. It is just those features which need
to be given up that make Forth so great.
So one can see rather quickly that pre-
emptive multi-tasking will be a big
problem for some time. I am not sure I
understand all there is to know about
multi-tasking, so I will try and explain it in
detail next time around.

The Computer Journal / Issue #37

A talk by Ray Duncan, a Doctor turned
Forth user, explained how he got started
using Forth. Seems he spent 6 or more
years writing a program in assembler, and
then saw Forth demonstrated. That demo
convinced him to go Forth. One of his
complaints (and mine) is that too many
people become convinced Forth is the
only language. I might add that others like
““C” as the only true language. The main
point Ray made, and which I strongly
support, is that you need to adjust your
choice of language to the time frame to
complete the job, the number of people
involved in the project, your own
programming style, cost, functionality,
tools, and to what level you need to reach
in the task. Sometimes Forth may win
out, some times other languages. This
doesn’t make one better than the other,
just more appropriate for the task at
hand.

Charles Moore (the inventor if you will
of Forth) gave a ‘“fire side chat’’ as usual,
and my friend noticed one interesting
comment. He noticed Chuck (Charles
Moore likes being called this) commented
on the need for memory. He feels your
program should take as little space as
possible, leaving the rest for data storage.
Those are good ideas to consider, as I am
sure more than once, we have all loaded a
program only to find not enough memory
left to do any form of work. What good is
a program that doesn’t leave any room for
your application, not very good!

Hardware Vendors

I understand that there were not a lot of
new vendors present. Silicon Composers
did talk about a few of their new produc-
ts. Silicon Composers currently makes PC
plug in boards for the Novix and
RTX2000. They have also produced a
product called SC/FOX. This is a stan-
dalone RTX2000 system for $1,195, that
includes software. It still seems a bit high
in price, but is cheaper than the $4,000
they charge for the RTX plug in board.
Most of the problems start with the high
price of the RTX CPU. They also plan on
producing a board with the WISC chip as
soon as production of the device is suf-
ficient.

Harris announced the availability of
their RTX2001. This cheaper version is
smaller and does not contain the MMU
(memory management unit). In quantity it
is suppose to be around $50 each. Now
that is still much higher than a Z80, or
even the Z180/64180 which have many of
the other RTX features like serial ports
and 1/0 ports. What you do gain is direct
Forth interpretation and incredible speed
from the RTX/Novix.

Some Final Words

I hadn’t intended to talk only about
Forth this time around, but once I star-
ted. .. My work with WordStar 5.0° and
Wordperfect 5.0® is still going on. I had
to remove WS 5.0 for my wife, it was just
too many changes too fast for her to han-
dle at once. I think given some time,
without a deadline to meet, and she would
like some of the changes. I have found
some bugs in the printer operation and
don’t like some of the changes which
make it closer to Wordperfect operation.
An example is the justification on/off op-
tion. Using it now puts a .OJ in the text as
you type, compared to the before where it
was a screen type option. I prefer the old
way, thank you anyway WordStar.

Well 1 promised Art this article early
because of the holidays and so any more
comments are just going to have to wait
till later. Hope all your holiday activities
were safe and pleasant.

For more information and help on For-
th try these sources:

Forth Interest Group
PO Box 8231
San Jose, CA 95155
(408)277-0668
Dues: $30/yr.

Genie Network
FIG section #700
Over 1200 Forth files on line
(800)638-9636
Special subscription fees for FIG mem-
bers

Micro Cornucopia
PO Box 223
Bend, OR 97709
(503)382-5060

The engines mentioned:

New Micros, Inc.
808 Dalworth
Grand Prairie, TX 75050
(214)642-5494

Bryte Computers, Inc.
PO Box 46
Augusta, ME 04330
(207)547-3218

Silicon Composers, Inc.
210 California Ave, Suite K
Palo Alto, CA 94306
(415) 322-8763
n

47

THE COMPUTER CORNER

by BIll Ribler

The Holiday season should be over by
the time you read this, and I hope all went

" well. Things here are starting to pick up as

the holidays actually get closer. A number
of interesting things have been going on.

The Number One CPU

A curious thing about the computer in-
dustry is which actual CPU device is the
most popular. I have been working as a
consultant lately, changing code on a real
time machine. As I worked on the code it
reminded me that the Z80 is still the most
used device around. Now I know that
most would think the PC clone based 8088
from Intel would be tops, but there are
too many variations of that device for
anyone of them to be used extensively.
The other factor is cost, the Z80 is cheap.

The machine 1 worked on controls a
camera mechanism and provides some
user interface. There is about $50 worth
of components including the card. Many
of the newer CPUs, especially 16 and 32

. bit versions, can cost 4 or 5 times that

amount, just for the CPU. On top of that
I'love to do Z80 assembly. It is simple and
straight forward, only bettered by the
68000. For real simple applications, the
68000 is overkill and so another reason to
use the Z80.

This leads me to comment on a letter |
received:

Dear Mr. Kibler

| read about your interest in Forth
engines in the “The Computer Corner” of
The Computer Journal issue #35.

I do a fair amount of assembly language
programming and am getting interested in
Forth. My concept is similar to yours in
that | think Forth would make a nice plat-
form for a microcontroller SBC. The dif-
ference is that i think the Novix is too ex-
pensive for simple tasks (e.g. control
lights, motors or read transducers). What
do you think of a project based on a Z80,
6809, or 68000 with Forth in EPROM.

Heath used to make a computer called a
H89. It was a two board system. One for
the terminal and the other a Z80 system
with 48K RAM. The terminal & CPU board
connection used a RS232 line. The lower
8K was for the ROM monitor. The CPU
board can be found for $20 at hamfests. |

48

thought this might be a start—replacing
the monitor with Forth.

| would be interested in your thoughts
and if “The Computer Corner” could be a
forum to develop such a home-brew
project.

Thanks for listening.

J.O.

Bremen, IN

Well, Mr. O, Thanks for the letter. For-
th in memory restricted systems is ideal
and far more capable than any debug type
monitor. For a new type *“SBC’’ the price
of the NOVIX is definitely too high. I
have hopes that Harris and their RTX2000
(a Novix plus MMU) will find a high
volume user that will bring the price to less
that $50 each. There is a product called
WISC, a Writable Instruction Set Com-
puter that will have a Forth instruction
set. The design and manufacturing cost
are to be less than Novix ($50) while only
being 10 to 20% slower. I’ll have more to
say about these later.

For cheap engines like you suggested in
your letter, Rockwell has a 6502 with in-
ternal Forth ROM, called the R65F11. I
have one of the units and have found
some ways around the design bugs. Un-
fortunately Rockwell is not actively sup-
porting the device so help from them is
almost nonexistent. Newer Forths include
the M68HCI11 from New Micros Inc.
based on the Motorola device. There is
also an Intel 8031 Forth from Bryte Com-
puters Inc. I haven’t played with either of
these two yet, but understand they have
real possibilities.

For beginners to Forth like yourself,
buying a Forth engine might be too much
too soon. I have used Xerox 820 boards
(cheap like your H89 boards) under an
Idaho Forth ROM. The code for the
ROM is available from Micro Cornucopia
as their 8 inch disk B18. The information
to make changes is not available as the
project was based on a commercial
product. When I ran the Idaho Forth it
proved a bit cumbersome and lacked
many features I wanted. I think a better
way to go would be using the public
domain F83 and modify it for your

machine. The reason is the availability of
all the source code. You can use it on any
CP/M or MSDOS and get familiar with it
before you put it in ROM. Several people
have done just that and the recent issue of
Forth Dimensions (The Forth Interest
Groups Newsletter) explains metacom-
piling (using itself to make a new you) to a
standalone application.

As you can see there are a lot of ways to
g0 in putting Forth into or on a computer
system. My original use for computers
was controlling energy systems and I have
decided that Forth is most ideal for ap-
plications of that nature. I am very much
interested in hearing from you (or anyone
doing Forth engine work) as to the
problems you encounter and your
solutions. The Computer Journal is
definitely interested in making not only
my Computer Corner available as a forum
on using small computers (with or without
Forth) but the entire magazine.

Your letter and my recent work on a
Z380 controller make me feel that the Z80
version of F83 could stand some commen-
ting on. I was thinking how nice it might
have been to make changes using Forth
and not a cross assembler. I know you
mentioned a lot of other chips, and they
are being used under Forth to control real
operations. The availability of Z80 based
units to modify and play with however
makes it a far better option. What is
needed is articles, not only mine, on just
what is involved in bringing up Forth.
What also needs commenting on is what is
the real advantage you gain by going to
Forth. I plan on doing development in
both assembly and then Forth to show the
difference.

[might suggest you join both FIG (For-
th Interest Group) and GENIE network.
The FIG membership will get you Forth
Dimensions which has lots of articles and
companies selling engines. On GENIE
there are 1200 Forth files to be down
loaded, as well as round table discussions
on all sorts of topics. You might even find
me there at times. FIG members have a
special subscription price to get started
with, not to mention our FIG members

(Continued on page 47)

The Computer Journal / Issue #37

